
PROGRAM: HUMS DOC. NO. T1009-0100-0101

HUMS
Open Systems Specification

Goodrich Corporation

Simmonds Precision Products, Inc.

Fuel & Utility Systems

CAGE CODE 89305

 Prepared Approved Approved Approved
By W.Thomas H.Clark A. Duke
Signed W.Thomas H.Clark A. Duke
Date 6/6/00 6/6/00 6/6/00

REV DATE REV BY PAGES AFFECTED ECO NO. REL NO.
INIT 5/26/00 Change document # from E-3424, include user

guide and interface requirement spec
information

E04486 00-1232E

A 5/22/02 WJT All pages affected. E08071 02-2161

Copyright 2000

Simmonds Precision Products, Inc.
All Rights Reserved

Approved for Public Release - Distribution Unlimited

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

i

Table of Contents

1 Scope .. 1

1.1 Identification ... 1
1.2 HUMS System Overview.. 1
1.3 Document Overview... 2
1.4 Document Control .. 3

2 Applicable Documents... 4
2.1 Customer Documents .. 4
2.2 Goodrich Documents & Drawings.. 4
2.3 Other Documents ... 4

3 HUMS Open System Interface Summary ... 5
3.1 PPU Software Interface.. 5
3.2 VPU Software Interface.. 6
3.3 External MPU Hardware Interfaces ... 6
3.4 Ground Station Software Interfaces... 7

3.4.1 File / Data Interfaces... 7
3.4.2 Application Architecture Interfaces ... 7

4 PPU Embedded Software ... 8
4.1 CSCI Description.. 8

4.1.1 System States and Modes.. 9
4.1.2 Memory Resources... 9
4.1.3 CPU Resources .. 9
4.1.4 System Timing .. 9
4.1.5 Data Flow.. 10

4.2 PPU Interfaces Overview... 10
4.2.1 Development Platform .. 10
4.2.2 General Description of Interface Objects.. 11
4.2.3 Description of Configuration Data... 11
4.2.4 Periodic Scheduling .. 12
4.2.5 Data Repository .. 13
4.2.6 Data Logging... 13
4.2.7 System Initialization .. 14

4.3 PPU Interfaces Detailed Package Description... 15
4.3.1 Overview of Derivable Base Types... 15
4.3.2 Package System_Types ... 16
4.3.3 Package System_States... 17
4.3.4 Initialization_Manager ... 18
4.3.5 Package Data_Validity_Adt .. 19
4.3.6 Package Configuration_Id_Adt ... 22
4.3.7 Package Cc_Executive_Interface... 24
4.3.8 Package Fc_Executive_Interface ... 25
4.3.9 Package Executive ... 27
4.3.10 Package Timestamp_Adt.. 29
4.3.11 package Data_Item... 35
4.3.12 package Repository_Types .. 36
4.3.13 package Abstract_Repository... 37
4.3.14 package Generic_Repository ... 37
4.3.15 package Repository .. 41
4.3.16 package Data_Logger... 49
4.3.17 package Dl_Interface_Types .. 50
4.3.18 package Data_Logger.Data_Logger_Interface .. 51
4.3.19 Package Vendor_IO.. 52

4.4 Examples of Using PPU Interfaces Package... 53
4.4.1 Example Overview .. 54

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

ii

4.4.2 package Gonkulator ... 56
4.4.3 package body Gonkulator .. 58
4.4.4 package Imaginary_Sensor.. 62
4.4.5 package body Imaginary_Sensor... 63
4.4.6 package Gonkulator_Factory ... 67
4.4.7 package body Gonkulator_Factory .. 67
4.4.8 package Sensor_Factory ... 69
4.4.9 package body Sensor_Factory... 69
4.4.10 package Debug_IO... 71
4.4.11 package body Debug_IO.. 71

4.5 Availability of PPU SW Templates and Public Class Packages.. 73
5 VPU Embedded Software Interfaces .. 74

5.1 Overview.. 74
5.2 Constraints... 74
5.3 Memory.. 75

5.3.1 Flash EPROM... 75
5.3.2 SRAM ... 75
5.3.3 DRAM ... 76

5.4 Timing .. 76
5.5 Interfaces ... 76

5.5.1 Definitions... 76
5.5.2 Software Libraries... 77
5.5.3 CSCI Interfaces .. 79
5.5.4 Signal Conditioning and Acquisition ... 81
5.5.5 Sample P3 Application ... 82

5.6 Development.. 85
6 VME Board Interface... 86

6.1 Power... 86
6.1.1 Voltage ... 86
6.1.2 Power Up.. 87
6.1.3 Power Outage... 87
6.1.4 Power Dissipation... 87

6.2 Mechanical... 87
6.2.1 Spare Boards.. 87
6.2.2 Deviations... 88

6.3 Connectors .. 88
6.3.1 Signals.. 88
6.3.2 Pin Assignments... 88

6.4 Environmental.. 88
6.4.1 Temperature/Altitude.. 88
6.4.2 Temperature Variation.. 88
6.4.3 Shock and Vibration ... 89
6.4.4 Humidity.. 89
6.4.5 Sand and Dust.. 89
6.4.6 Fungus.. 89
6.4.7 Salt Atmosphere... 89
6.4.8 EMI ... 89
6.4.9 Explosion Proof .. 93
6.4.10 Waterproofness .. 93

6.5 Bus Interfaces.. 93
6.5.1 Bus Types Provided ... 93
6.5.2 Access methods, protocols .. 93
6.5.3 Limitations: timing, bandwidth, etc. .. 94

6.6 Configuration Data... 94
7 MPU External Interfaces ... 95

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

iii

7.1 Connectors ... 95
7.1.1 Signals .. 95
7.1.2 Signal Pin Assignments .. 96

7.2 Bus Interfaces .. 96
7.2.1 Bus Types ... 96
7.2.2 Access Methods, Protocols... 96
7.2.3 External Bus Interface Pin Assignments... 96
7.2.4 Limitations: Timing, Bandwidth, etc. ... 96

7.3 Configuration Data ... 97
8 Ground Station Interfaces ... 98
9 HUMS Systems Integration Process Model .. 99

9.1 Problem Domain .. 99
9.2 Responsibilities ..101
9.3 Typical Systems Integration Scenarios..102

9.3.1 External Third-Party Box Communicating with MPU via ARINC 429 ...102
9.3.2 Third-Party Application in PPU ...102
9.3.3 Third-Party VME Board in MPU..102
9.3.4 Third-Party Application Accessing Ground Station ADF(s) ..103

10 Notes ...104
10.1 Abbreviations & Acronyms..104

Appendix A MPU External Connector Signal Assignment ...105
Appendix B Spare Board Signal Assignment & Geometry..115
Appendix C - Technology Integration Questionnaire..126
1 Objectives..126
2 Main Processor Resource Requirements ...126

2.1 Hardware Resources ...126
2.1.1 Power Supply Resources..126
2.1.2 Power Status...126
2.1.3 Power Dissipation ...126
2.1.4 VME Card Slot External Signal I/O ...126
2.1.5 VME Bus Interface ..127
2.1.6 Environmental Requirements. ..127
2.1.7 Electromagnetic Computability Requirements..127

2.2 Primary Processor Unit ..127
2.2.1 PPU Embedded Software...127
2.2.2 PPU Data Repository Resource Requirements..128
2.2.3 Basic Actions ..128
2.2.4 Procedural Actions..128
2.2.5 Event Detection...128
2.2.6 Interrupt...128

2.3 Vibration Processor Unit ..129
2.3.1 VPU Embedded Software...129
2.3.2 Accelerometer Acquisition Requirements...129

2.4 Main Processor Unit Signal Conditioning Resource Requirements...129
2.5 Main Processor Serial Interface Requirements ...129

3 Input Output Requirements ...129
3.1 Remote Data Concentrator Requirements...129
3.2 Data Transfer Requirements..129

3.2.1 Upload Requirements ...129
3.2.2 Download Requirements...129

3.3 Aircrew User Interface Requirements ..129
4 Ground Support Station Resource Requirements...129

4.1 Platform Requirements ..129
4.2 ADF ..129
4.3 NALCOMIS Database Resource Requirements..129

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

iv

4.4 User Interface .. 129
4.4.1 Icon Launch .. 129
4.4.2 Graphical User Interface .. 129

5 Built in Test Methods .. 129
6 Integration and Test Requirements Plan .. 129
7 Validation Requirements... 129
8 Qualification Requirements... 129

List of Figures
FIGURE 1-1 SYSTEM OVERVIEW ...2
FIGURE 3-1 PPU SOFTWARE INTERFACE OVERVIEW DIAGRAM ..5
FIGURE 3-2 MPU HARDWARE INTERFACES...6
FIGURE 4-1 MAIN PROCESSOR UNIT CSCIS...8
FIGURE 4-2 PPU DATA FLOW DIAGRAM ...10
FIGURE 4-3 FACTORY REGISTRATION WITH THE EXECUTIVE...54
FIGURE 4-4 EXECUTIVE FACTORY INITIALIZATION SEQUENCE..55
FIGURE 6-1 TOP VIEW OF MPU ILLUSTRATING THE SPARE BOARD SLOTS..86
FIGURE 6-2 REPRESENTATIVE MPU ASSEMBLY..87
FIGURE 6-3 AUDIO FREQUENCY CONDUCTED SUSCEPTIBILITY TEST LEVELS ...90
FIGURE 6-4 RS-101 MAGNETIC FIELD RADIATED SUSCEPTIBILITY SPEC. LIMITS ...91
FIGURE 6-5 RADIATED EMISSIONS - MIL-STD-461D LOWER FREQUENCY RAGE...92
FIGURE 6-6 RADIATED EMISSIONS - MIL-STD-461D HIGHER FREQUENCY RANGE..92
FIGURE 7-1 BACK VIEW OF MPU ARINC 600 CONNECTOR..95

FIGURE A - 1 ARINC CONNECTOR & PIN OUTS ..105

FIGURE B - 1 MPU BACKPLANE BLOCK DIAGRAM..115
FIGURE B - 2 HUMS MPU SPARE SLOT GEOMETRY ...125

List of Tables
TABLE 4-1 SYSTEM STATES...9
TABLE 4-2 GENERIC DATA PACKET FORMAT ..12
TABLE 4-3 PPU INTERFACE PACKAGES...15

TABLE A - 1 ARINC CONNECTOR J1A (15 X 10) [ANAA]...107
TABLE A - 2 ARINC CONNECTOR J1B (15 X 10) [VPU]...108
TABLE A - 3 ARINC CONNECTOR J1C (5 X 10) [POWER SUPPLY]...109
TABLE A - 4 ARINC CONNECTOR J1D (15 X 10) [ANAA,B] ..111
TABLE A - 5 ARINC CONNECTOR J1E (15 X 10) [ANAA,PPU] ...113
TABLE A - 6 ARINC CONNECTOR J1F (10 X 10) [PPU]...114

TABLE B - 1 SPARE BOARD A, JA1 PIN OUTS..116
TABLE B - 2 SPARE BOARD A, JA0 PIN OUTS..118
TABLE B - 3 SPARE BOARD A, JA2 PIN OUTS..120
TABLE B - 4 SPARE BOARD B, JB1 PIN OUTS ..121
TABLE B - 5 SPARE BOARD B, JB0 PIN OUTS ..123
TABLE B - 6 SPARE BOARD B, JB2 PIN OUTS ..124

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

1

1 Scope

1.1 Identification

This document serves to detail the basic architecture of the Health Usage and Management System (HUMS)
Integrated Mechanical Diagnostic Systems (IMDS) and its interfaces. The HUMS IMDS has been designed to be an
open system, thereby allowing new health and diagnostic technologies to be integrated into the HUMS.

A HUMS technology provider may interface with this system by five distinct methods:

• Embedding software in the existing HUMS on-board system primary processing unit.
• Embedding software in the existing HUMS on-board system vibration processing unit.
• Use of a VME-based data acquisition and processing board within the HUMS on-board system.
• Interfacing a remote data acquisition and processing system with the HUMS on-board system.
• Providing software to run on the HUMS ground station (post-flight analysis).

1.2 HUMS System Overview

The HUMS is an integrated system designed to perform health and usage monitoring functions for fixed and
rotary wing aircraft drive train, propulsion, and structural components. The complete HUMS system consists
of the following elements:

• On-Board System (OBS)
• Ground Station (GS)

The OBS consists of the separate Line Replaceable Units (LRUs) as follows:

• Main Processor Unit (MPU)
• 0 or more optional Remote Data Concentrators (RDC)
• An optional display unit
• The Data Transfer Unit (DTU)

The OBS is responsible for collecting, processing, analyzing, and storing data obtained from sensors located
throughout the aircraft. The MPU analyzes the input data for exceedances and events, calculates various
flight regimes, performs various diagnostic algorithms, normalizes trend data, and stores the data to an
onboard data cartridge. Two specific processors are utilized in the MPU. The primary processing unit (PPU)
performs select data acquisition, processing, and communication with external interfaces. The PPU is
supplemented with the vibration-processing unit (VPU), which performs high-speed data acquisition and
processing of vibration (accelerometer) data. A user interface is provided via an on-board Control Display Unit
(CDU) or other display devices connected through a data bus. This interface allows the operator to view
aircraft operating data in real-time and provides password protected maintenance information. Exceedance
alerts and aircraft status data to the aircrew is also provided. In addition, this interface also provides the
aircrew with the appropriate prompts for sequencing through the diagnostic operations. The flight data is
stored on a flash memory card.

The GS consists of 2 S/W configuration items that support the OBS:

• Ground Software (GS)
• MPU Software Loader/Verifier Utility

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

2

The GS is the primary user interface with the HUMS system. It is responsible for logging and maintaining all
flight and maintenance data, generating aircraft maintenance-due lists based on flight data, performing aircraft
configuration and parts tracking, generating engineering and management reports, and archiving data.

Specifically, the GS functions include:

• DTU Initialization and Download
• Parts and Maintenance Configuration Tracking
• Usage Calculations/Updates
• Condition Indicator Extraction
• Advanced Diagnostics
• Data Graphing, trending, and Reporting
• System/User Administration
• Interfacing to external Applications

F re q u en cy inp u t
A cce le ra tio ns
T a ch s ig n a ls
O p tica l tracke r s ig n a ls
In d ex sen so r s ig n a ls
D C -lo w s ign a ls (+ /- 7 .5 V D C)
D C -h ig h s ig na ls (7 5 V D C)
A C s ig na ls (+ /- 12 V A C)
H a rd la nd ing d e te c to r s ig na l
S h u n t ge n e ra to r s ign a ls
S yn ch ro s ig na ls
D iscre te s

M IL S T D 1 5 53
A R IN C 7 1 7

R S 42 2 /2 32 /48 5

A R IN C 4 29

P P U
V P U

S p a re B
S p a re A

B lack B o x (D ata S o u rce)
O p tio n a l D isp la y

D T U

R D C M P U

G S

O p t D isp la y

O p t D isp la y

Figure 1-1 System Overview

1.3 Document Overview

This document specifies the Open System Interfaces of the HUMS IMDS system. This document consists of the
following sections:

Chapter 1: Scope. Identifies the system and context of the system to which this document is written.
Provides the context or system overview and the relationship between this document and others in the
program.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

3

Chapter 2: Applicable Documents. Provides a list of referenced documents.

Chapter 3: HUMS Open System Interface Summary. Provides a summary of all of the SW/HW interfaces
that are provided to third party developers in the HUMS system.

Chapter 4: PPU Embedded Software. Provides a detailed description of the Ada95 interfaces available on
the Onboard System

Chapter 5: VPU Embedded Software Interfaces. Provides a detailed description of the 'C' interfaces
available on the VPU.

Chapter 6: VME Board Interface. Provides a description of the characteristics and parameters associated
with the hardware interface of the VME board.

Chapter 7: MPU External Interfaces. Provides a description of the available I/O and the mechanical /
electrical characteristics of the MPU's external interfaces.

Chapter 8: Ground Station Interfaces. Provides a reference to the proper GS document.

Chapter 9: HUMS System Integration Process Model. Defines responsibilities of third party developers
and describes typical integration scenarios.

Chapter 10: Notes. Provides a list of abbreviations and acronyms.

Appendix A: MPU External Connector Signal Assignments. Provides all of the pin assignments of the
external ARINC connectors of the MPU.

Appendix B: Spare Board Signal Assignment & Geometry. Provides all of the signals and pin
assignments for the spare VME connector in the HUMS system.

Appendix C: Technology Integration Questionnaire. Provides a set of questions that third party
developers answer and submit to Goodrich; Used to asses the viability of the technology being considered for
integration.

1.4 Document Control

This document is provided by and maintained by Goodrich Corporation. The information in this document is subject to
change without notice and should not be construed as a commitment by Goodrich Corporation. Goodrich assumes no
responsibility for any errors that may appear in this document.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

4

2 Applicable Documents

The following documents of the exact issue shown form a part of this document to the extent specified herein. In case
of a conflict between the documents referenced herein and the contents of this document, the contents of this
document will shall take precedence.

Note: In an attempt to make this document applicable to any aircraft on which a HUMS systems is installed Goodrich
has factored out, as much as possible, all references to aircraft specific documentation. In the body of this document,
references to aircraft specific documents will be made to titles where the actual aircraft identifiers are replaced by the
phrase "Aircraft Specific" in the title. An example would be: Aircraft Specific IMDS Core Parameters document.

2.1 Customer Documents

NA

2.2 Goodrich Documents & Drawings

Document Number Document Title
6000051-01-ICD-0101 Interface Control Document for the Health and Usage Management System Activity

Data File Component
6000051-45-ICD-0101 Interface Control Document for the HUMS Task Controller Component
30190-0458-01 Circuit Card Assembly: Spare Board Layout Drawing

2.3 Other Documents

Document Number Document Title
ARINC-429-14-93 Mark 33 Digital Information Transfer System (DITS) (includes supplements 1

through 14)
EIA RS-232-E-91 Interface between Data Terminal Equipment and Data Circuit Terminating

Equipment Employing Serial Binary Data Interchange
EIA RS-422-B-94 Electrical Characteristics of Balanced Voltage Digital Interface Circuits
IEEE Standard 1014-1987 IEEE Standard for a Versatile Backplane Bus: VME bus (ANSI)
IEEE Standard 1101.2-1992 IEEE Standard for Mechanical Core Specifications for Conduction-Cooled

Eurocards
MIL-STD-1553 Digital Time Division Command/Response Multiplexing Data Bus, Revisions A & B
MIL-STD-461D Control Of Electromagnetic Interference Emissions and Susceptibility,

Requirements For The Control Of
RTCA / DO-160C-1989 Environmental Conditions and Test Procedures for Airborne Equipment
ISO/IEC 8652:1995 Ada95 Reference Manual: Language and Standard Libraries
ISO 8601:2000 Data elements and interchange formats -- Information interchange --

Representation of dates and times.
UD/REF/A1910-057020/002 Aonix Language Reference Manual
RTCA/DO-178B Software Considerations in Airborne Systems & Equipment Certification (1,12,1992)

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

5

3 HUMS Open System Interface Summary

This section provides a brief description of the various types of open system interfaces available in each of the major
functional components of the HUMS system.

3.1 PPU Software Interface

Figure 3-1 PPU Software Interface Overview Diagram

• Third Party Ada Application
Third party technology providers provide software applications written in the Ada95 language. The main interfaces
(services) available to developers come in the form of Ada95 packages.

• Interfaces to Other Languages
Third party technology providers have the ability to incorporate software written in the 'C' language. The 'C' language
modules do not have direct access to the services, instead an Ada wrapper supplies all data and I/O required by the
module.

• General Services
The General Services include all of the general type packages; a package for working with data validity attributes, a
package for working with data timestamps, and a package that provides general debug output for use during target
integration.

• Executive Services
The Executive Services provide applications with the capability to register for and receive cyclic updates. It provides
the main thread of control for the software applications.

Third Party
Ada Application

'C'
Program

Repository
Services

Data_Item
Repository_Types
Abstract_Repository
Generic_Repository
Repository

Executive
Services

Executive
Cc_Executive_Interface
Fc_Executive_Interface

Data Logging
Services

Data_Logger
Dl_Interface_Types
Data_Logger.Data_Logger_Interface
Vendor_IO

System_Types
System_States
Configuration_Id_Adt
Data_Validity_Adt
Timestamp_Adt
Debug_IO

General
Services

Initialization
Services

Initialization_Manager

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

6

• Initialization Services
The Initialization Services provide applications with the capability to read configuration data.

• Repository Services
The Repository Services provide applications with the capability to read and write values from the On-Board Systems
internal data store.

• Data Logging Services
The Data Logging Services provide applications with the capability to log data to the On-Board Systems external data
store, the Data Transfer Unit

3.2 VPU Software Interface

3.3 External MPU Hardware Interfaces

Figure 3-2 MPU Hardware Interfaces

Executive
Interface

Drive Train
Diagnostics

Third Party
Application

C Runtime Library

Vector Library

Fast Fourier Transform (FFT)

Raw Data Access

Magnitude/Phase Calibration

Processor Identification

MPU

Tr
ac

ke
r

M
ai

n
R

ot
or

 A
cc

el

En
gi

ne
 A

cc
el

D
riv

e
Tr

ai
n

Ac
ce

l

Ta
il

R
ot

or
 A

cc
el

ARINC 429 Buses

IN

Out

Tach/Freq

RS-422 Buses

RS-232
Bus

M
ic

ro
ph

on
e

7
14

2

10

4

32 6

1

4

162

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

7

3.4 Ground Station Software Interfaces

3.4.1 File / Data Interfaces

The Ground Station application stores flight data in two binary data files. The Raw Data File (RDF) is a copy of the
flight data as it is stored by the On-Board System (OBS) on the flash memory card. The Activity Data File (ADF) is an
index file into the flight data contained within the RDF. Since the format of these two files is under the control of
Goodrich Corporation, the method by which a third-party software application can access raw flight data is through the
Ground Station's Activity Data File Component. Using this component the format of the RDF and ADF is hidden from
the software developer, and the data contained within the files is exposed as a hierarchy of Common Object Model
(COM) objects that are intuitively organized to permit a "drill-down" approach to retrieving data. See the Interface
Control Document for the HUMS Activity Data File Component for more information.

3.4.2 Application Architecture Interfaces

The Ground Station application architecture includes frameworks by which extension of the base functionality can be
achieved. Goodrich Corporation utilizes these frameworks internally to increase the flexibility and configuration
options of the Ground Station, which typically must be customized for each installation. A third party technology
developer can utilize these interfaces to extend the Goodrich Ground Station to perform functionality adjunctive to
HUMS. Specifically, the HUMS Task Controller Component of the Ground Station supports the IHUMSDownloadTask
and IHUMSDownloadTask2 interfaces, which are the interfaces required to be supported by components that are run
during an aircraft operation download. See the Interface Control Document for the HUMS Task Controller Component
for specific details.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

8

4 PPU Embedded Software

4.1 CSCI Description

The Flight Program CSCI is part of the Main Processor Unit. Figure 4-1 depicts the relationship between this CSCI
and the other CSCIs that reside in the Main Processor Unit.

Figure 4-1 Main Processor Unit CSCIs

Main Processor Unit (MPU)

Primary Processor Unit (PPU)

Aircraft
Sensors &

Busses

Vibration Processor Unit (VPU)

VPU
BootROM
CSCI

REM
CSCI

DTD
CSCI Configuration

Data Tables

C

S

DTU CDU

Flight
Program
CSCI

PPU
BootROM
CSCI

Configuration
Data Tables

S

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

9

4.1.1 System States and Modes

State Mode Description

Cold Start

The Cold_Start Mode (Sub-State) will perform the entire suite of power
up operations including built-in test. This mode will also determine if a
new configuration data load has been placed into Flash memory since
the last cold start. If new data has been placed into Flash, processing
will occur. Upon completion of the cold start operations, a transition to
the 'Warm_Start' Mode will occur. Initialization

Warm Start

The Warm_Start Mode (Sub-State) will perform the normal system and
object initialization. This is the mode where the internal software
objects will be created, initialized, and bound together to define the
system. Upon completion of Warm_Start, the system will transition to
the 'Normal_Processing' State.

Normal -- The Normal Mode will allow data acquisitions to be performed and allow
data logging to the DTU device.

Shutdown --

The Shutdown Mode will perform the operation of placing all state data
required to allow restart of the system to the current configuration into
non-volatile RAM. When particular criteria has been met, the software
will initiate a hardware shutdown sequence and then terminate.

Table 4-1 System States

4.1.2 Memory Resources

The PPU memory consists of 1Meg bytes of battery backed up RAM (BBRAM), 32M bytes of dynamic RAM (DRAM)
and 8M bytes of Flash (ROM). The memory allocation for the Boot CSCI, Flight Program CSCI and Configuration
Data will vary between aircraft models. Contact Goodrich for memory allocation profiles for a particular aircraft.

4.1.3 CPU Resources

The PPU Flight Program CSCI executes on a PowerPC 603e 32-bit microprocessor operating at 128 MHz.

4.1.4 System Timing

Typically, the PPU is supporting 0.2 to 20 Hz processes (0.05 to 5 sec). There is a 50% spare provision within the
PPU. This implies that the PPU must perform all operations within 2.5 seconds of the 5-second major frame. For a
simple (best-case) HUMS application, a third-party technology provider could have up to 25% of the available
processing time (0.625 sec of the 2.5 sec major frame).

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

10

4.1.5 Data Flow

Main Processor Unit
(MPU)

Primary Processor Unit (PPU)

Vibration Processor Unit (VPU)

-> Flight Program CSCI

Rotor & Engine Monitoring CSCI

Cockpit
Display

Unit (CDU)

Data Transfer Unit
(DTU)

Aircraft Busses

Aircraft Sensors

Remote
Data

Concentrator
(RDC)

Configuration
and

Flight Data

Display
and

User Input

Acquire /
Update

Data
Acquire /
Update

Data
Acquire /
Update

Data

Command

Response Data

Acquire
Data

Acquire
Data

Figure 4-2 PPU Data Flow Diagram

4.2 PPU Interfaces Overview

4.2.1 Development Platform

The Flight Program CSCI utilizes functions/classes defined within the ObjectAda Real-Time Windows NT x
PowerPC/RAVENTM subset of the Ada 95 Language Reference Manual. Third-party developers are advised to review
Aonix document UD/REF/A1910-05720/002 for specific descriptions of supported functions/classes from the Ada 95
Language Reference Manual Annexes.

The Flight Program CSCI also has the ability to interface to object modules written in the 'C' language. The 'C'
compiler used must be the one that is released with the ObjectAda Real-Time Windows NT x PowerPC/RAVENTM
toolset.

4.2.1.1 General Notes on Developing Interface Modules in Ada95

The Aonix Ada95 compiler (which conforms to the RAVENSCAR profile) does not provide a default heap
management system for dynamic acquisition of memory via allocators. Therefore, all variables must be statically
allocated. Keep in mind that this does not prohibit the use of 'general' access types that can provide access to aliased
(statically allocated) objects.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

11

4.2.1.2 General Notes on Developing Interface Modules in 'C'

C modules (developed with the above mentioned 'C' compiler) should always be compiled and delivered as a pure
object module ready for linking. When archiving C code as a library, use the 'ar' command (archive command) which
produces a pure object file that can be linked with the main application. Do not use the 'ld' command that produces an
executable image.

Just as there is no dynamic memory allocation of data in Ada95 there is also none available in 'C'. All memory must
be statically allocated. Note that the 'C' compiler does not initialize static memory areas to any specific value. It is the
responsibility of the developer to initialize all statically allocated memory before use.

4.2.2 General Description of Interface Objects

The HUMS Flight Program CSCI is based on an object oriented design methodology. The design is realized in
Ada95, which is an object-oriented language. In general, objects are instances of classes. Classes in a Ada95 are
realized using the Package/Type mechanism. Packages are the modules in which tagged types and primitive
subprograms are declared that define the functional behavior of objects of the tagged types. Objects are simply
variables of the tagged types; the variables are passed as parameters to the primitive operations to achieve the
desired behavior. New classes can be derived from existing classes and new members or components can be added
to the objects, new primitive operations can be defined as well.

Third party vendors will use the existing classes that are defined in the HUMS Open Systems Interface to create
objects of their own that execute in the HUMS system. Third part classes will derive new subclasses from the existing
HUMS classes and they will develop associations to objects created from these classes. For instance a third party
class will derive from existing executive classes in order to provide operations that require periodic scheduling; they
will then create an aggregate of internal objects for access to Configuration Data, Repository Items and Data Logging
Objects.

4.2.3 Description of Configuration Data

The HUMS system is built around the concept of a “Data Driven Architecture”. Most of the systems run time structure
and behavior is controlled by data tables that are resident in memory and read at system initialization time. The main
concept adhered to during system design was to factor out as many system parameters as possible and to make
them “configurable parameters”. Configurable parameters drastically reduce the need for code modifications when
adapting the HUMS system to a new aircraft. In most cases, the system can completely adapt to a new aircraft by
simply changing the configuration data tables.

Users of the OS Interface may also take advantage of the concept of “configuration data/configuration parameters”
when designing their software classes/objects. During the design phase the user should be looking for
‘structural/behavioral dimensions and attributes’ that have a high probability of changing, then factoring them out into
configuration parameters. Keep in mind that configuration data files can be loaded onto the target hardware without
having to reload the system software.

Goodrich has allocated several groups of Configuration Ids (Data Table Ids) for third party vendors. The
Configuration Ids manifest themselves as 32 bit unsigned integer values. Each 32-bit double word value is comprised
of two 16 bit words. The most significant word represents the Class Id value; the least significant word represents the
Instance Id. Each vendor is assigned a maximum of 10 Class IDs that limits the vendor to ten main classes of objects
within the system. Goodrich uses the convention that the first number in class 1 is the developers 'main' number that
is used to schedule the developers object. Within each class, the vendor is limited to 512 specific instances of those
classes. An example of a vendor class could be a Sensor, where the vendor may define 12 different sensors objects
that would correspond to 12 specific instances of the vendors Sensor class. The vendor could then define
configuration data for each sensor and access that data with a unique Configuration Id all having the same Class
component but different Instance Ids.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

12

4.2.3.1 Private Configuration Data verses Reference Lists

Third party vendors can define their own private configuration data that they have access to using the Vendor Id's
described above. The vendor can also specify that Goodrich place a list of configuration id's, a reference list, to other
system entities at one of the vendors Id's. This reference list is the mechanism that vendors use to gain access to
repository items and other systems objects it may require. In order for Goodrich to supply this reference list of
configuration data the vendor must supply Goodrich with a list of nomenclature corresponding to the data items
needed.

4.2.3.2 Configuration Data Generic Data Packet

Users of the OS Interface must determine the format of the configuration data and submit the table data values in the
form of a binary data file to Goodrich prior to system integration. The binary data file must be formatted according to
the generic data packet definition below (see Table 4-1), keep in mind that the data file requires a big endian byte
gender (bit 0 is the MSB). Goodrich will then include these user defined data tables into its main configuration data
file to be available to the user at system initialization time. The vendor can freely utilize the Cyclic Redundancy field;
Goodrich will not validate the field.

Offset
(Bytes)

Length
(Bytes)

Name Type Description

0 4 Class
Identifier

UDWORD Unique value supplied by Goodrich. Contains only the Class Id, the Instance is
zero.

4 4 Length UDWORD The number of bytes in length of the entire data packet, including the Identifier and
CRC.

8 ND Data Item Vendor specific data.
8 + ND NP Pad UBYTE(s) Variable length field that forces the CRC data element to be on a 32 bit boundary.

The value of all pad bits is zero.
8 + ND + NP 4 CRC UDWORD The Cyclic Redundancy

Table 4-2 Generic Data Packet Format

4.2.4 Periodic Scheduling

The HUMS system schedules objects for execution by using the Executive subsystem. The Executive
subsystem provides separate threads of control, each executing at a configurable rate (predetermined by Goodrich).
The Executive subsystem provides the subprograms needed to register system objects to be periodically
scheduled. The package Cc_Executive_Interface provides an abstract base class that defines all of the primitive
operations needed by any user derived class that has scheduling needs.

The heart of the Cc_Executive_Interface functionality is an abstract procedure named Update. The procedure
Update, redefined by the user, is the procedure that Executive dynamically dispatches to during run-time at some
predetermined rate. The body of Update (written by the user) will perform calls to all of the application specific cyclic
processing routines needed within the users subsystem. The user-defined class must register a reference to its object
with the Executive at system initialization time.

A fixed number of scheduling rates are provided, with the rate specified in configuration data. Configuration data will
also specify the rate at which each schedulable object in the system must called. For example the rates configured
may be; 1Hz, 2Hz, 5Hz, 10Hz, 20Hz, and 30Hz. Contact Goodrich for a list of rates for a specific aircraft.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

13

4.2.5 Data Repository

The Data repository provides the isolation of the core Flight Program software from the specifics of the aircraft
configuration and the details of the hardware interfaces.

The Data Repository serves as a standard method of communicating data from one object to another. Instead of
having objects communicate directly with one another to pass data, they can use the data repository to pass data.
This eliminates unnecessary object-to-object dependencies.

The Data Repository has been designed to allow single producers and multiple consumers of specific data objects.
Only one producer can be registered for any given value. The Data Repository is the internal data store of the HUMS
system. It provides the common interface to all aircraft data being monitored or generated by the Flight Program
software.

The Data Repository has no knowledge of producers, consumers, or any other client of the Repository. It maintains
data for its clients based on pre-determined initialization parameters. After a client stores data or retrieves data, the
client and the repository each have their own copy of the data. The Repository makes no assumptions about how
clients will use data.

4.2.5.1 Events and Exceedances in the Repository

Events in the system are considered to be either Monitored or Instantaneous. Instantaneous events are generated by
objects/processes under unique circumstances and they exist only for a particular instance of time. The only action
the system performs on instantaneous events is to log them to the DTU card. They are never assessable to any other
object or process within the system. Monitored events on the other hand last for some duration of time and as such,
their state can be reflected in a repository value.

There are a number of predefined exceedances/events listed in the Goodrich Document E-#### Aircraft Specific
IMDS Core Parameters. Third party developers can also specify their own monitored events (in the Technology
Questioner Appendix C). Goodrich will then define a boolean (discrete) repository item that will reflect the state of the
event/exceedance and make the configuration id associated with that discrete available to the developer.

4.2.6 Data Logging

Third party developers can log data to the DTU card in the form of private data packets. This can be accomplished
using the package Vendor_IO. The private data packets can contain any type of user data; the data is logged as an
array of bytes. The developer logs data by calling the routine Log_Private_Data. The routine accepts an array of
bytes up to a max size of 4096 bytes, a Cage Code, and a Vendor ID. The packets can be retrieved on the ground
station using the Cage Code as a key.

The packets themselves are not explicitly sequenced; it is the responsibility of the third party developer to devise a
scheme for sequencing the packets. This will usually take the form of a sequence number embedded within the data
itself. Absolute timestamps are another data item that the developer may embedded in the data to add context.

There is a throughput limit of 115K bits per second going to the DTU. This will factor into the amount of data that a
developer write to the card on a cyclic basis.

Note: It is a good practice to develop applications that write their data periodically to the DTU card instead of waiting
for a possible "once a flight event" such as engines off, or landing. There is no telling if a particular condition will ever
be met in flight, so it is a good practice to accumulate data over time. This will ensure some data is recorded even if
the "flight event" is not detected.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

14

4.2.7 System Initialization

System initialization is a major phase of the systems operation. The system works on a convention that each class of
active system objects (ie. sensors, displays…) will be associated with one factory (see Figure 4-4 Executive Factory
Initialization Sequence) that performs the initialization sequence particulars for all objects within that class. System
initialization occurs in three separate phases. They are the Creation Phase, Reference Resolution Phase, and the
Hardware Initialization Phase.

System initialization is accomplished through a specific class defined as the Cc_Factory_Interface class. This
class defines three main procedures Create, Resolve_References, and Initialize_Hw that correspond to the
three phases of initialization. Prior to system initialization, during ‘package elaboration’ the factory objects are
‘registered’ with the system Executive class. During initialization each of the three defined procedures of the factory
class are called by the executive during their appropriate phase. The factory procedures then in turn perform
initialization on each of the class objects individually.

4.2.7.1 Creation Phase

During the Creation Phase of system initialization, all of the objects (instances of classes) are created and are
initialized with their configuration data. In the objects configuration data there is usually Configuration Ids that will be
used to gain access to other objects that will be needed during normal operation. For example, all of the “Repository
Entries” that an object will need are received first as Configuration Ids in the objects configuration data; during the
Reference Resolution phase the retrieved configuration ids will then be used to obtain references or pointers to the
actual repository entries.

4.2.7.2 Reference Resolution Phase

During the Reference Resolution Phase of system initialization, all the objects in a class use the Configuration Ids
they received in their configuration data and call various routines in the system that take configuration ids as inputs
and yield references to other system objects. A user will find that the class factory is always the best place to retrieve
object references since a factory is responsible for the creation of all objects of a particular class. The required factory
is then the logical candidate to store and dispense the references (pointers) to the objects it has created.

So for instance if the system contained a Sensor Manager object which had to be associated with a number of
Physical Sensor Objects then during the Reference Resolution phase the Sensor Manager object would call the
Physical Sensor factory to obtain a reference or pointer to all of the Physical Sensors objects that it created. The
Physical Sensor factor would then require a routine in its interface that takes in a Configuration ID and then returns a
pointer to a Physical Sensor object.

The repository itself creates all of the repository items. Therefore, if a particular object needs access to a repository
item then they call one of the Repository procedures Register_as_Consumer or Register_as_Producer,
input a Configuration ID to it and then obtain out a pointer to the repository item.

Keep in mind that object references are obtained only after the Creation phase takes place, this is in order to eliminate
any race conditions by guaranteeing that all objects have been created and that all references will exist.

4.2.7.3 Hardware Initialization Phase

The Hardware Initialization phase is the last in the initialization sequence. This phase is entered after all system level
objects are created and after all references are resolved. This is the time in which to accomplish any low level
hardware initialization required by the objects.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

15

4.3 PPU Interfaces Detailed Package Description

The software inventory associated with this Open System Software Interface consists of a set of Ada packages. The
specific Ada packages are listed below along with a short description of the purpose and functionality. The only other
software packages that the Software Interface depends upon are the predefined Ada packages that are defined as
part of the Ada compilation system that is described in the section entitled Software Environment.

Package Name Description
System_Types Defines general-purpose types used throughout the system.
System_States Defines a set of system states that are used in determining the status of the system.
Initialization_Manager The functions used to retrieve configuration data tables from memory.
Data_Validity_Adt The operations used to manipulate objects that reflect the validity of various data objects.
Configuration_Id_Adt Defines a set of data types and operations that define the unique identifiers of predefined groups of

configuration data.
Cc_Executive_Interface The base class used for all objects that require to be scheduled periodically.
Fc_Executive_Interface The base class for the definition of specific factories that initialize sets of objects at system

initialization time.
Executive The subsystem used for scheduling objects that have registered for periodic processing services.
Timestamp_Adt The class used for objects that manipulate system absolute and relative timestamps.
Data_Item The base type of all data items that will be stored in the data repository.
Repository_Types Simple package defining a string type and blank string constant.
Abstract_Repository The abstract base class to be used as the foundation for all specific repositories.
Generic_Repository A Generic package that allows particular types of items to exist in the repository.
Repository The Repository Object includes instances of the generic repositories and includes general repository

operations.
Data_Logger The parent package for the data logging routines.
Dl_Interface_Types Defines the types used with the Data Logger Interface
Data_Logger.Data_Logger_Interface The main interface into the data logging functions.
Vendor_IO Package that provides an interface to log private data packets.

Table 4-3 PPU Interface Packages

4.3.1 Overview of Derivable Base Types

Classes in Ada take the form of type definitions declared in Ada package specifications. The following is a discussion
of three main type definitions that are found in many of the Ada packages that define classes in the HUMS system.
The type Object is an abstract tagged limited type that means that it is an extendable record type (you can add
components through derivation) and its inner details are private. Since it is limited private, objects of this type cannot
be copied via assignment, they can only be manipulated through the primitive operations that are defined in the
specification of the package.

The type Reference is an access type (pointer type) that can be used to supply indirect access to objects of any
type rooted at the type Object. Values of this type can point to objects of type Object and this value can be used to
pass the object to subprograms that both read and write the internal values of the data type.

The View type on the other hand defines an access type that provides read only access to the object, so values of
this type can only reference objects and pass them to procedures that read the internal components of the type.

 type Object is abstract tagged limited private;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

16

4.3.2 Package System_Types

The package System_Types defines a set of general-purpose types that are used throughout the Open System
Interfaces. It is declarative in nature in that it only provides type definitions.

with Interfaces;
package System_Types is -- ==

 type Byte_Array is array (Integer range <>) of Interfaces.Unsigned_8;

 type Byte_Array_Ref is access all Byte_Array;

 type Ieee_Float_32_Buffer is array (Integer range <>) of Interfaces.Ieee_Float_32;

 type Ieee_Float_64_Buffer is array (Integer range <>) of Interfaces.Ieee_Float_64;

 type Integer_16_Buffer is array (Integer range <>) of Interfaces.Integer_16;

 type Integer_32_Buffer is array (Integer range <>) of Interfaces.Integer_32;

 type Return_Status is (Ok, Failed, Unknown);

end System_Types; -- ==

4.3.2.1 Package System_Types Type Declarations

The type Byte_Array is an unconstrained array type definition of 8 bit unsigned components indexed by the
predefined type Integer. The type Byte_Array_Ref is an access type (pointer type) that can be used to reference
objects of type Byte_Array.

The types IEEE_Float_32_Buffer and IEEE_Float_64_Buffer are unconstrained array type definitions of 32-
bit and 64-bit floating-point components respectively; the predefined type Integer indexes both array types.

The types Integer_16_Buffer and Integer_32_Buffer are unconstrained array type definitions of 16-bit and
32-bit unsigned integer components respectively; the predefined type Integer indexes both array types.

The type Return_Status is an enumeration type with the values Ok, Failed, and Unknown. It is used in the
declaration of several status parameters in various subprograms in the package Executive.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

17

4.3.3 Package System_States

The package System_States defines a set of types and constants that are used throughout the Open System
Interfaces when specifying or inquiring about the state of various system operations. It is declarative in nature in that it
only provides type definitions. A detailed explanation of the types is as follows.

with Interfaces;
package System_States is -- ===

 type Initialization_Mode is (Create_Objects,
 Resolve_References,
 Initialize_Hw);

 subtype System_State is Interfaces.Unsigned_8;

 -- ===================================--

 Initialize : constant := 2#0000_0001#;
 Normal : constant := 2#0000_0010#;
 Shutdown : constant := 2#0010_0000#;

end System_States; -- ===

4.3.3.1 Package System_States Type Declarations

The type Initialization_Mode is an enumeration type with the values Create_Objects,
Resolve_References, and Initialize_Hw. This type defines the three different types of initialization that exist
for objects within the system. Not all objects require all three types of initialization.

The type System_State is an unsigned 8-bit integer definition. The package defines a set of constant declarations
these constants act as masks corresponding to the various system states.

 Initialize : constant := 2#0000_0001#;
 Normal : constant := 2#0000_0010#;
 Shutdown : constant := 2#0010_0000#;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

18

4.3.4 Initialization_Manager

This package provides the services required to provide clients with the location (address) of their specific
configuration data.

with Interfaces;
with System;
package Initialization_Manager is --==

 procedure Get_Configuration
 (The_Table : in Interfaces.Unsigned_32;
 Pre_Cert_Address : out System.Address;
 Pre_Cert_Length : out Natural);

end Initialization_Manager; --===

Note: Goodrich provides the value of The_Table; It uniquely defines the third party developer's configuration data
table in memory.

The users configuration data tables will usually manifest themselves internally as Ada record types, or in some cases
arrays of Ada record types. During system initialization the software will “get” the configuration data by making calls
to Get_Configuration that will return a parameter of type System.Address. This address value will be
converted into an access or pointer type by using an instantiation of the predefined Ada package
Address_to_Access_Conversions. By using this package and converting the address to an access type the
user can achieve a “safe” overlay of an Ada record type over the storage occupied by the memory resident
configuration data. For an example see package body Gonkulator 4.4.3.

The procedure Get_Configuration takes in a parameter named The_Table of type Unsigned_32. This
parameter is a unique number that identifies the desired table that resides in system memory. The procedure also has
two parameters that receive data, the parameter Pre_Cert_Address of type System.Address receives the
physical memory address of the table in system memory, and the parameter Pre_Cert_Length of type Natural
receives the length of the table in bytes.

 procedure Get_Configuration
 (The_Table : in Interfaces.Unsigned_32;
 Pre_Cert_Address : out System.Address;
 Pre_Cert_Length : out Natural);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

19

4.3.5 Package Data_Validity_Adt

This package provides the types that define all possible data validity attributes. This package also provides the
routines required to set, check, and clear a validity object. Data_Validity data types are used exclusively in the
construction of Data Repository items. Every Data Repository item has a component of type Data_Validity.

with Interfaces;
package Data_Validity_Adt is --==

 subtype Data_Validity is Interfaces.Unsigned_16;

 type Data_Validity_Attribute is
 (Valid, Invalid,
 No_Computed_Data, Invalid_Computed_Data,
 Out_Of_Range_Hi, Out_Of_Range_Lo,
 Invalid_Predecessor, Defaulted,
 Defaulted_Used, Old_Data,
 Rate_Error);

 type Validity_State is (On, Off);

 --====================================--

 procedure Clear_All_Attributes (Item : in out Data_Validity);

 --

 procedure Set_Attribute (Item : in out Data_Validity;
 The_Attribute : in Data_Validity_Attribute;
 To_State : in Validity_State);

 --

 function Is_Invalid (Item : in Data_Validity) return Boolean;

 --

 function Valid return Data_Validity;

 function Attribute_Is_Set (Item : in Data_Validity;
 The_Attribute : in Data_Validity_Attribute) return Boolean;

 --

 procedure Combine_Validity (Item_1 : in Data_Validity;
 Item_2 : in Data_Validity;
 Result : out Data_Validity);

 --

 procedure Set_Default_Validity (Item : in out Data_Validity);

end Data_Validity_Adt; --==

4.3.5.1 Data_Validity_Adt Data Types

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

20

The type Data_Validity is a 32-bit integer type. It is essentially a private data type in that the actual bit fields that
are set for any of the corresponding enumeration values of type Data_Validity_Attribute are hidden by the
processing of the various subprograms defined in the package.

The type Data_Validity_Attribute is an enumeration type that contains the following values Valid,
Invalid, No_Computed_Data, Invalid_Computed_Data, Out_Of_Range_Hi, Out_Of_Range_Lo,
Invalid_Predecessor, Defaulted, Defaulted_Used, Old_Data, Rate_Error. The values describe
various conditions and status that can be associated with a particular data repository item. Each value corresponds to
a particular bit in the 32-bit data type Data_Validity. Several pairs of the values are mutually exclusive

4.3.5.2 Data_Validity Subprograms

4.3.5.2.1 procedure Clear_All_Attributes

This operation will clear all bits within the validity object.

 procedure Clear_All_Attributes (Item : in out Data_Validity);

4.3.5.2.2 procedure Set_Attribute

This operation will set the appropriate attribute bit within the validity object. The caller of this operation supplies the
attribute and the attribute state.

 procedure Set_Attribute
 (Item : in out Data_Validity;
 The_Attribute : in Data_Validity_Attribute;
 To_State : in Validity_State);

4.3.5.2.3 function Is_Invalid

This operation will return the valid/invalid state of the validity object.

 function Is_Invalid (Item : in Data_Validity) return Boolean;

4.3.5.2.4 function Valid

This operation will return the valid representation for a validity object.

 function Valid return Data_Validity;

4.3.5.2.5 function Attribute_Is_Set

This operation will return the state of the specified attribute for the validity object.

 function Attribute_Is_Set (Item : in Data_Validity;
 The_Attribute : in Data_Validity_Attribute) return Boolean;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

21

4.3.5.2.6 procedure Combine_Validity

This operation will take two Validity objects and derive the resulting validity.

 procedure Combine_Validity (Item_1 : in Data_Validity;
 Item_2 : in Data_Validity;
 Result : out Data_Validity);

4.3.5.2.7 procedure Set_Default_Validity

The Set_Default_Validity operation will set the validity to defaulted.

 procedure Set_Default_Validity (Item : in out Data_Validity);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

22

4.3.6 Package Configuration_Id_Adt

This package provides the types that describe the configuration identifiers throughout the system. Included in this
package are routines to determine the 'class' and 'instance' numbers that are embedded in the configuration identifier.

with Interfaces;

package Configuration_Id_Adt is -- ==

 subtype Configuration_Id is Interfaces.Unsigned_32;
 subtype Class_Id is Interfaces.Unsigned_16;
 subtype Instance_Id is Interfaces.Unsigned_16;
 --
 -- The following subtypes identify the different classes. The range of the
 -- subtype specified the number of instances allowed for the subtype.

 subtype Data_Set_Id is Configuration_Id range 16#0700_0000# .. 16#0700_0032#; -- 50
 subtype Repository_Id is Configuration_Id range 16#0D00_0000# .. 16#0D00_05DC#;
 subtype Event_Id is Configuration_Id range 16#0F00_0000# .. 16#0F00_01F4#;
 subtype Monitored_Event_Id is Configuration_Id range 16#0F00_0001# .. 16#0F00_012C#;
 subtype Instantaneous_Event_Id is Configuration_Id range 16#0F00_012D# .. 16#0F00_01F4#;
 subtype Threshold_Id is Configuration_Id range 16#0F10_0000# .. 16#0F10_05DC#;
 subtype Event_Data_Set_Id is Configuration_Id range 16#0FB0_0000# .. 16#0FB0_0032#; -- 50

 Nil_Id : constant Configuration_Id := 16#0000_0000#;

 --====================================--

 function Class_Is (The_Id : in Configuration_Id) return Class_Id;

 function Instance_Is (The_Id : in Configuration_Id) return Instance_Id;

 function Nil_Identifier (The_Id : in Configuration_Id) return Boolean;

end Configuration_Id_Adt; --===

4.3.6.1 Package Configuration_ID_Adt Data Types

The package defines three main subtypes; they are Configuration_Id, Class_Id, and Instance_Id. The
Configuration_ID subtype is a 32 bit unsigned integer type that is used for unique identifiers that identify
configuration data table that reside in memory. The unique identifier that Goodrich supplies the third party vendors to
access their configuration data is of this subtype. Each value of type Configuration_Id can be decomposed into
two 16-bit halves, these two parts correspond to values of the subtypes Class_Id, and Instance_Id.

 subtype Configuration_Id is Interfaces.Unsigned_32;
 subtype Class_Id is Interfaces.Unsigned_16;
 subtype Instance_Id is Interfaces.Unsigned_16;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

23

The package also contains a number of subtype ranges each corresponding to a particular range of Id numbers that
identify configuration data for various type of system objects.

 subtype Data_Set_Id is Configuration_Id range 16#0700_0000# .. 16#0700_0032#; -- 50
 subtype Repository_Id is Configuration_Id range 16#0D00_0000# .. 16#0D00_05DC#;
 subtype Event_Id is Configuration_Id range 16#0F00_0000# .. 16#0F00_01F4#;
 subtype Monitored_Event_Id is Configuration_Id range 16#0F00_0001# .. 16#0F00_012C#;
 subtype Instantaneous_Event_Id is Configuration_Id range 16#0F00_012D# .. 16#0F00_01F4#;
 subtype Threshold_Id is Configuration_Id range 16#0F10_0000# .. 16#0F10_05DC#;
 subtype Event_Data_Set_Id is Configuration_Id range 16#0FB0_0000# .. 16#0FB0_0032#; -- 50
 Nil_Id : constant Configuration_Id := 16#0000_0000#;

4.3.6.2 Package Configuration_ID_Adt Subprograms

4.3.6.2.1 function Class_Is

This operation will return the class number from the specified configuration identifier.

 function Class_Is (The_Id : in Configuration_Id) return Class_Id;

4.3.6.2.2 function Instance_Is

This operation will return the instance number from the specified configuration identifier.

 function Instance_Is (The_Id : in Configuration_Id) return Instance_Id;

4.3.6.2.3 function Nil_Identifier

This operation will determine if the Configuration Id represents a Nil identifier (i.e. The Instance id = 0);

 function Nil_Identifier (The_Id : in Configuration_Id) return Boolean;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

24

4.3.7 Package Cc_Executive_Interface

The Executive_Interface provides the interface methods necessary for a class to be scheduled by the executive.
Each class that is to be controlled by the executive scheduler must inherit this interface.

with System_States;

use type System_States.Operation_States;

package Cc_Executive_Interface is --==

 type Object is abstract tagged limited private;

 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 procedure Update (The_Object : access Object) is abstract;

 procedure Shutdown (The_Object : access Object) is abstract;

private --==

 type Object is abstract tagged limited
 record
 Registered_For_Shutdown : Boolean :=False;
 Registered_For_Change_Of_Operation : Boolean := False;
 Operation_State : System_States.Operation_States :=
 System_States.Operation_In_Progress;
 end record;

end Cc_Executive_Interface; --==

4.3.7.1 Package CC_Executive_Interface Data Types

For an explanation of the types Object, Reference, and View see 4.3.1.

The private part of the package is supplied to show the components that are defined as part of the tagged record type
OBJECT.

The type is a tagged record type which means that it can be extended by the user who derives a new type from it. The
components of the record are revealed in the Software Interface so that a user does not extend the type and use the
names of any of the existing components.

 type Object is abstract tagged limited
 record
 Registered_For_Shutdown : Boolean :=False;
 Registered_For_Change_Of_Operation : Boolean := False;
 Operation_State : System_States.Operation_States :=
 System_States.Operation_In_Progress;
 end record;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

25

4.3.7.2 Package CC_Executive_Interface Subprograms

4.3.7.2.1 procedure Update

The Update operation defines the interface specification to the Update method supplied by each class that inherits
this interface. The Update method supplied by the class will allow the scheduler to initiate any periodic processing
required for the classes objects.

 procedure Update (The_Object : access Object) is abstract;

4.3.7.2.2 procedure Shutdown

The Shutdown procedure supplied by the class performs the processing required to prepare the classes' object for a
system shutdown. The shutdown procedure does not release memory that has been allocated to the object.

A call to this operation will result when the system has been notified of an impending shutdown. This does not
guarantee that a shutdown will actually occur. Normal processing may resume after this call is made.

 procedure Shutdown (The_Object : access Object) is abstract;

4.3.8 Package Fc_Executive_Interface

The FC_Executive_Interface provides the interface methods necessary for each factory class in the system.
Factories are usually responsible for the creation of all of the objects of a particular class. As well as creating the
objects of a particular class it will usually provide a specific function to dispense references to the objects it creates
internally. A factory class will also have to initially register with the Executive; this is because the executive is
responsible for calling the Initialize procedure during the various phases of initialization.

with System_States;

package Fc_Executive_Interface is -- ==

 type Object is abstract tagged limited private;

 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 --====================================--

 procedure Initialize
 (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode) is abstract;

Private --==

 type Object is abstract tagged limited null record;

end Fc_Executive_Interface; --===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

26

4.3.8.1 Package FC_Executive_Interface Type Declarations

 type Object is abstract tagged limited private;

 type Reference is access all Object'Class;
 type View is access constant Object'Class;

For an explanation of the types Object, Reference, and View see section 4.3.1.

4.3.8.2 Package FC_Executive_Interface Subprograms

4.3.8.2.1 procedure Initialize

The Initialize operation defines the interface specification to the Initialize method supplied by each class that inherits
this interface. The Initialize method supplied by the factory class shall perform the initialization required to create all
objects managed by the factory, and then resolve all run-time references between the objects created and other
objects in the system.

The Executive will call this operation during system initialization.

When this operation is called with the mode set to 'Create_Objects', the factory class should create all objects that will
be managed by that factory. When this Operation is called with the mode set to 'Resolve_References', the routine will
call Resolve Reference routines for all of the objects it manages.

procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode) is abstract;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

27

4.3.9 Package Executive

The Executive package provides the tools for controlling the scheduling of operations within the system. The main
function of the Executive package is to provide the capability to periodically schedule various system objects defined
within the system.

with Cc_Executive_Interface;
with Configuration_Id_Adt;
with Fc_Executive_Interface;
with Interfaces;
with System_States;
with System_Types;

package Executive is --===

 type Startup_Mode is (Warm_Start, Cold_Start);

 type Execution_Rate_Id is new Integer range 0 .. 6;
 for Execution_Rate_Id'Size use 8;

 --====================================--

 function Startup_Mode_Is return Startup_Mode;

 function Rate_In_Milliseconds (Rate_Id : in Execution_Rate_Id) return Interfaces.Unsigned_32;

 --

 procedure Register
 (The_Object : in out Cc_Executive_Interface.Reference;
 With_Config_Id : in Configuration_Id_Adt.Configuration_Id;
 The_Status : out System_Types.Return_Status);

 --

 procedure Register
 (The_Factory : in out Fc_Executive_Interface.Reference);

end Executive; --==

4.3.9.1 Package Executive Type Declarations

 type Startup_Mode is (Warm_Start, Cold_Start);

 type Execution_Rate_Id is new Integer range 0 .. 6;
 for Execution_Rate_Id'Size use 8;

The type Startup_Mode is an enumeration type that enumerates the values cooresponding to the different types of
startups the system can experience. The function Startup_Mod_Is return a value of this type.

The type Executation_Rate_ID is an integer type that defines the total number of different scheduling rates that
are available within the system. The function Rate_In_Milliseconds takes this type as a parameter and returns
the number of milliseconds defined for that rates period.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

28

4.3.9.2 Package Executive Subprograms

4.3.9.2.1 function Startup_Mode_Is

This operation will return the startup mode for the system.

 function Startup_Mode_Is return Startup_Mode;

4.3.9.2.2 function Rate_In_Milliseconds

This operation will return the number of milliseconds related to the specified periodic execution rate.

 function Rate_In_Milliseconds (Rate_Id : in Execution_Rate_Id) return Interfaces.Unsigned_32;

4.3.9.2.3 procedure Register {1}

The Register operation is provided by this interface to allow executive clients to register with the executive. The
executive will be provided a set of configuration data during its initialization. This configuration data will identify each
of the objects in the system that will be scheduled by the executive, and its rate of execution. At run-time, all objects
to be scheduled must register using this service to provide the run-time binding between the executive and each
scheduable client.

 procedure Register
 (The_Object : in out Cc_Executive_Interface.Reference;
 With_Config_Id : in Configuration_Id_Adt.Configuration_Id;
 The_Status : out System_Types.Return_Status);

4.3.9.2.4 procedure Register {2}

The Register operation is provided to allow executive factory clients to register with the executive. The clients that
register will then be called using the operations supplied by the Fc_Executive_Interface interface, to initialize the
system.

 procedure Register (The_Factory : in out Fc_Executive_Interface.Reference);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

29

4.3.10 Package Timestamp_Adt

This package provides the types that contain the timestamp and relative timestamp (time since baseline) used
throughout the system.

with Ada.Real_Time;
with Cc_Executive_Interface;
with Interfaces;

use type Interfaces.Unsigned_32;

package Timestamp_Adt is -- ===

 type Object is new Cc_Executive_Interface.Object with private;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 type Absolute_Timestamp is
 record
 Year : String (1 .. 4); -- YYYY - current UTC year
 Month : String (1 .. 2); -- MM - current UTC month
 Day : String (1 .. 2); -- DD - current UTC day
 Time_Marker : String (1 .. 1) := "T"; -- T - literal 'T'
 Hour : String (1 .. 2); -- HH - current UTC hour
 Minute : String (1 .. 2); -- MM - current UTC minute
 Whole_Second : String (1 .. 2); -- SS - current UTC second
 Second_Marker : String (1 .. 1) := ","; -- , - literal ','
 Fractional_Second : String (1 .. 3); -- sss - fractional seconds
 Utc_Marker : String (1 .. 1) := "Z"; -- Z - literal 'Z'
 end record;

 type Relative_Timestamp is private;

 Nil_Relative_Timestamp : constant Relative_Timestamp;

 Default_Absolute_Timestamp : constant Absolute_Timestamp :=
 (Year => "1998",
 Month => "01",
 Day => "01",
 Time_Marker => "T",
 Hour => "00",
 Minute => "00",
 Whole_Second => "00",
 Second_Marker => ",",
 Fractional_Second => "000",
 Utc_Marker => "Z");

 --====================================--

 function Absolute_Timestamp_Is return Absolute_Timestamp;

 function Absolute_Reference_Timestamp_Is return Absolute_Timestamp;

 function Relative_Timestamp_Is return Relative_Timestamp;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

30

 function Relative_Timestamp_Is (Start_Time : in Relative_Timestamp;
 Delta_Time : in Duration) return Relative_Timestamp;

 function Previous_Relative_Timestamp_Is (Start_Time : Relative_Timestamp;
 Delta_Time : Duration) return Relative_Timestamp;

 function In_Range (The_Timestamp : in Relative_Timestamp;
 The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Boolean;

 function Elapsed_Ms (The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Relative_Timestamp;

 function Elapsed_Ms (The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Interfaces.Unsigned_32;

 function Previous_Time_Is (The_Delta : in Duration) return Relative_Timestamp;

 procedure Add (The_Accumulator : in out Relative_Timestamp;
 The_Delta : in Relative_Timestamp);

 procedure Update (The_Object : access Object);

 procedure Shutdown (The_Object : access Object);

 function Relative_To_Absolute_Time (The_Relative_Time : in Relative_Timestamp)
 return Absolute_Timestamp;

 function Relative_To_String (The_Relative_Time : in Relative_Timestamp)
 return String;

 function "=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function "<" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function "<=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function ">" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function ">=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function "=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function "<" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function "<=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function ">" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function ">=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

31

 function "+" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Relative_Timestamp;

private

 -- Represents the number of milliseconds from reference point
 type Relative_Timestamp is new Interfaces.Unsigned_32;

 type Object is new Cc_Executive_Interface.Object
 with record
 Current_Relative_Time : Relative_Timestamp;
 Absolute_Time_Reference : Ada.Real_Time.Time;
 Absolute_Time_Reference_Iso8601 : Absolute_Timestamp;
 end record;

 Nil_Relative_Timestamp : constant Relative_Timestamp := 0;

end Timestamp_Adt;

4.3.10.1 Package Timestamp_Adt Type Declarations

 type Object is new Cc_Executive_Interface.Object with private;

 type Reference is access all Object'Class;

 type View is access constant Object'Class;

The type Object is derived from the CC_Executive_Interface.Object and is extended in the private part of this
package. The reason for this object is so the package itself can be 'scheduled' in order to keep track of time.
Although these types are necessary for the package to work properly, they are of no concern to the end user. The
real working type of this package is the Relative_Timestamp Absolute_Timestamp.

 type Absolute_Timestamp is
 record
 Year : String (1 .. 4);
 Month : String (1 .. 2);
 Day : String (1 .. 2);
 Time_Marker : String (1 .. 1) := "T";
 Hour : String (1 .. 2);
 Minute : String (1 .. 2);
 Whole_Second : String (1 .. 2);
 Second_Marker : String (1 .. 1) := ",";
 Fractional_Second : String (1 .. 3);
 Utc_Marker : String (1 .. 1) := "Z";
 end record;

 type Relative_Timestamp is private;

 Nil_Relative_Timestamp : constant Relative_Timestamp;

 Default_Absolute_Timestamp : constant Absolute_Timestamp :=
 (Year => "1998", Month => "01",
 Day => "01", Time_Marker => "T",
 Hour => "00", Minute => "00",
 Whole_Second => "00", Second_Marker => ",",
 Fractional_Second => "000", Utc_Marker => "Z");

The Absolute and Relative timestamp types are ones of real interest to the end user. The absolute timestamp is an
exposed record type with a set of components that are broken up into string values. The format of the string conforms

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

32

to ISO 8601. Within HUMS, Absolute timestamps are used to establish a time base and the Relative timestamps are
used after that. As can be seen Absolute require a considerable amount of storage compared to the 32 bit unsigned
integer values of Relative timestamps.

Keep in mind that Ada supplies a package named Ada.Real_Time that supplies an extremely efficient and accurate
concept of time, that package is described in detail in the Ada Language Reference Manual section D.8.

4.3.10.2 Package Timestamp_Adt Subprograms

4.3.10.2.1 function Absolute_Timestamp_Is

This operation will return a timestamp representing the current UTC time in ISO 8601 format. This format is:

 YYYYMMDDTHHMMSS,sssZ

 where:
 YYYY - current UTC year
 MM - current UTC month
 DD - current UTC day
 T - literal 'T'
 HH - current UTC hour
 MM - current UTC minute
 SS - current UTC second
 , - literal ','
 sss - fractional seconds
 Z - literal 'Z' (indicates time is in UTC or Zulu)

 function Absolute_Timestamp_Is return Absolute_Timestamp;

4.3.10.2.2 function Absolute_Reference_Timestamp_Is

This operation will return a timestamp representing the reference time (absolute time format) from which all relative
timestamps are based.

 function Absolute_Reference_Timestamp_Is return Absolute_Timestamp;

4.3.10.2.3 function Relative_Timestamp_Is

This operation will return a relative timestamp.

 function Relative_Timestamp_Is return Relative_Timestamp;

4.3.10.2.4 function Relative_Timestamp_Is

This operation will return a relative timestamp.

 function Relative_Timestamp_Is (Start_Time : in Relative_Timestamp;
 Delta_Time : in Duration) return Relative_Timestamp;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

33

4.3.10.2.5 function Previous_Relative_Timestamp_Is

This operation will return a relative timestamp, which is before the supplied start time. Note the relative timestamp will
be limited to zero.

 function Previous_Relative_Timestamp_Is (Start_Time : Relative_Timestamp;
 Delta_Time : Duration) return Relative_Timestamp;

4.3.10.2.6 function In_Range

This operation will return an indication of whether a relative timestamp is within to other relative timestamps.

 function In_Range (The_Timestamp : in Relative_Timestamp;
 The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Boolean;

4.3.10.2.7 function Elapsed_Ms {1}

This operation will return the elapsed time, in milliseconds, between two relative timestamps.

 function Elapsed_Ms
 (The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Relative_Timestamp;

4.3.10.2.8 function Elapsed_Ms {2}

This operation will return the elapsed time, in milliseconds, between two relative timestamps.

 function Elapsed_Ms (The_Start_Time : in Relative_Timestamp;
 The_End_Time : in Relative_Timestamp) return Interfaces.Unsigned_32;

4.3.10.2.9 function Previous_Time_Is

This operation will return the current time minus the supplied delta. It this previous time is less than zero, it will be set
to zero.

 function Previous_Time_Is (The_Delta : in Duration) return Relative_Timestamp;

4.3.10.2.10 procedure Add

This operation will return the sum of two relative timestamps.

 procedure Add (The_Accumulator : in out Relative_Timestamp;
 The_Delta : in Relative_Timestamp);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

34

4.3.10.2.11 procedure Update

This operation will update the current and relative time attributes based upon the real time clock (RTC). This
operation should be called at the highest frequency of updates within the system. This procedure allows the package
to keep track of the current time on a cyclic basis. The user of this package need not be concerned with it.

 procedure Update (The_Object : access Object);

4.3.10.2.12 procedure Shutdown

This operation is required due to the inheritance of the executive interface, however no shutdown processing is
required for this class.

 procedure Shutdown (The_Object : access Object);

4.3.10.2.13 function Relative_To_Absolute_Time

This operation converts relative time to absolute time.

 function Relative_To_Absolute_Time (The_Relative_Time : in Relative_Timestamp) return
 Absolute_Timestamp;

4.3.10.2.14 function Relative_To_String

This operation converts relative time to formatted string (hh:mm:ss).

 function Relative_To_String (The_Relative_Time : in Relative_Timestamp) return String;

4.3.10.2.15 Overloaded Relational Operators for Absolute_Timestamp

The following are a group of overloaded relational operators, they each take two parameters of Absolute_Timestamp
and all return values of type Boolean. The functions perform their general relational operations with no surprises.

 function "=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function "<" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function "<=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function ">" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

 function ">=" (Left : in Absolute_Timestamp;
 Right : in Absolute_Timestamp) return Boolean;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

35

4.3.10.2.16 Overloaded relational Operators for Relative_Timestamp

The following are a group of overloaded relational operators, they each take two parameters of Relative_Timestamp
and all return values of type Boolean. The functions perform their general relational operations with no surprises.

 function "=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function "<" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function "<=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function ">" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

 function ">=" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Boolean;

4.3.10.2.17 function “+”

This function simply adds to relative time values together and returns a Relative_timestamp.

 function "+" (Left : in Relative_Timestamp;
 Right : in Relative_Timestamp) return Relative_Timestamp;

4.3.11 package Data_Item

This class defines the base type of data stored in the data repository. Each data item store in the repository will
contain the data defined in this class. This class only provides the common data elements required for all types of
data in the repository. This class must be extended for each specific data type stored in the repository.

with Data_Validity_Adt;
with Timestamp_Adt;

package Data_Item is -- ===

 type Object is abstract tagged
 record
 Validity : Data_Validity_Adt.Data_Validity := Data_Validity_Adt.Valid;
 Timestamp : Timestamp_Adt.Relative_Timestamp := Timestamp_Adt.Nil_Relative_Timestamp;
 end record;

 type Reference is access all Object'Class;

 type View is access constant Object'Class;

 procedure Set_Defaults (The_Item : in out Object);

end Data_Item; -- ===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

36

4.3.11.1 Package Data_Item Type Declarations

This packages Object type is not private but exposed so that it can be derived without have to become part of the
packages family.

The tagged record type contains two components that all derived objects will contain, a Validity component which
indicates the validity of the data item, and a Timetamp component which will represent a relative offset from a known
reference within the system using the repository. These components are of types that are described in there
corresponding packages.

type Object is abstract tagged
 record
 Validity : Data_Validity_Adt.Data_Validity := Data_Validity_Adt.Valid;
 Timestamp : Timestamp_Adt.Relative_Timestamp := Timestamp_Adt.Nil_Relative_Timestamp;
 end record;

type Reference is access all Object'Class;

type View is access constant Object'Class;

4.3.11.2 Package Data_Item Subprograms

4.3.11.2.1 procedure Set_Defaults

This procedure is used to allow each new defined data type to have a procedure called upon the Object at creation
time.

procedure Set_Defaults (The_Item : in out Object);

4.3.12 package Repository_Types

This package contains any specific types required for the repository CSC. This is a simple package that only defines a
String subtype constrained to 20 characters and constant of that type filled with blanks.

package Repository_Types is --===

 subtype String_20 is String (1 .. 20);

 Blank_String_20 : constant String_20 := (others => ' ');

end Repository_Types; --===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

37

4.3.13 package Abstract_Repository

This package contains the abstract class type for all repositories. All repository types must inherit this interface to
allow a common base class type to be used when accessing any of the derived repository classes. There are no
operations defined for this abstract class.

package Abstract_Repository is --==

 type Object is abstract tagged private;

 type Reference is access all Object'Class;

 type View is access constant Object'Class;

private --===

 type Object is abstract tagged null record;

end Abstract_Repository; --==

Note : For an explanation of the types Object, Reference, and View see section 4.3.1.

4.3.14 package Generic_Repository

This package contains the generic class that maintains the 'repository' for individual data items. The package
supports requests for the single current value of a data item, multiple values of a data item, or a set of time based
values for a data item. The amount of historical (or queued) data retained within the repository instance is specified
via a generic parameter during creation of the object.

This package inherits the base repository class. It also inherits the abstract data item type for the data contained in
each item. The type specified in the generic instantiation of this package extends this type.

with Abstract_Repository;
with Data_Item;
with System;
with Timestamp_Adt;

generic --===

 type Data_Type is private;
 Default_Value : in Data_Type;
 Max_Data_Elements : in Integer;
 Special_Pool_Enabled : in Boolean;
 Special_Pool_Address : in out System.Address;
 Special_Pool_Data_Valid : in Boolean;
 Max_Sp_Data_Elements : in Integer;

package Generic_Repository is --===

 type Data_Element is limited private;

 type Data is new Data_Item.Object
 with record
 Value : Data_Type;
 end record;

 --====================================--

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

38

 type Object is new Abstract_Repository.Object with private;

 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 type Item_Buffer is array (Integer range <>) of Data;

 --====================================--

 function Number_Of_Elements
 (The_Repository : in View) return Integer;

 function Number_Of_Elements
 (The_Repository : in View;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp) return Integer;

 function Get_Current
 (From_Repository : in View) return Data;

 function Get_Previous
 (From_Repository : in View;
 Prev_Sample_Num : in Integer) return Data;

 procedure Get_Buffer
 (From_Repository : in View;
 Number_Of_Items : in out Integer;
 The_Buffer : out Item_Buffer);

 procedure Get_Buffer
 (From_Repository : in View;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp;
 The_Buffer : out Item_Buffer;
 Number_Of_Items : out Integer);

 procedure Put
 (At_Repository : in out Reference;
 The_Item : in Data);

private --===

 type Data_Element is
 record
 Dummy : Boolean;
 end record;

 type Object is new Abstract_Repository.Object with null record;

end Generic_Repository; --===

4.3.14.1 Package Generic_Repository Generic Parameter Declarations

The type Data_Type is a private generic type parameter that is imported into the generic unit. It is used to add
components to internal data types through record extensions.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

39

 type Data_Type is private;

4.3.14.2 Package Generic_Repository Type Declarations

Extend the data item type with the 'Data_Type' specified during generic instantiation. All data types maintained in the
repository are based upon the abstract type specified in the 'Data_Item' class.

 type Data_Element is limited private;

 type Data is new Data_Item.Object
 with record
 Value : Data_Type;
 end record;

The repository 'object' is a specialization of the abstract repository class.

 type Object is new Abstract_Repository.Object with private;

 type Reference is access all Object'Class;
 type View is access constant Object'Class;

The item queue contains the multiple values of a data item.

 type Item_Buffer is array (Integer range <>) of Data;

4.3.14.3 Package Generic_Repository Subprograms

4.3.14.3.1 function Number_Of_Elements {1}

The Number_Of_Elements operation will return the total number of data values in the repository for the data item.

 function Number_Of_Elements (The_Repository : in View) return Integer;

4.3.14.3.2 function Number_Of_Elements {2}

The Number_Of_Elements operation will return the number of data values in the repository for the data item with
timestamps within the start and end times specified.

 function Number_Of_Elements
 (The_Repository : in View;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp)
 return Integer;

4.3.14.3.3 function Get_Current

The Get operation will return the most current data for the data item.

 function Get_Current (From_Repository : in View) return Data;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

40

4.3.14.3.4 function Get_Previous

The Get operation will return the specified previous sample for the data item. If that sample does not yet exist in the
buffer, the oldest item in the buffer will be returned.

 function Get_Previous (From_Repository : in View;
 Prev_Sample_Num : in Integer) return Data;

4.3.14.3.5 procedure Get_Buffer {1}

The Get_Buffer operation will return a buffer containing the data for the specified data item. The actual number of
items placed in the buffer is returned to the caller along with the buffer. The output buffer is filled starting with the
most recent item in the repository.

 procedure Get_Buffer (From_Repository : in View;
 Number_Of_Items : in out Integer;
 The_Buffer : out Item_Buffer);

4.3.14.3.6 procedure Get_Buffer {2}

The Get Buffer operation will return a buffer containing the data for the specified data item for the requested period of
time. The specified end time must be no later than the current time. The actual number of items placed in the buffer
is returned to the caller along with the buffer. The output buffer is filled starting with the most recent item in the
repository.

If no end time is specified, the current time will be used.

 procedure Get_Buffer
 (From_Repository : in View;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp;
 The_Buffer : out Item_Buffer;
 Number_Of_Items : out Integer);

4.3.14.3.7 procedure Put

The Put operation allows a producer client to update the current data for a data item in the repository.

 procedure Put (At_Repository : in out Reference;
 The_Item : in Data);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

41

4.3.15 package Repository

with Abstract_Repository;
with Configuration_Id_Adt;
with Data_Item;
with Fc_Executive_Interface;
with Generic_Repository;
with Interfaces;
with Repository_Types;
with System_States;
with Timestamp_Adt;
with System;
with System.Storage_Elements;
with System_Types;

use System.Storage_Elements; -- for address addition

package Repository is --===

 Max_Fp_Items : constant Natural := 1000;
 Max_Int_Items : constant Natural := 200;
 Max_Discrete_Items : constant Natural := 300;
 Max_Unsigned_Items : constant Natural := 175;
 Max_String_Items : constant Natural := 40;
 Max_Abs_Time_Items : constant Natural := 20;
 Max_Rel_Time_Items : constant Natural := 20;

 Max_Fp_Elements : constant Integer := 15_000;
 Max_Int_Elements : constant Integer := 1_500;
 Max_Dis_Elements : constant Integer := 2_000;
 Max_Unsigned_Elements : constant Integer := 400;
 Max_String_Elements : constant Integer := 200;
 Max_Abs_Time_Elements : constant Integer := 20;
 Max_Rel_Time_Elements : constant Integer := 20;

 Max_Sp_Fp_Items : constant Natural := 200;
 Max_Sp_Int_Items : constant Natural := 100;
 Max_Sp_Discrete_Items : constant Natural := 50;
 Max_Sp_Unsigned_Items : constant Natural := 200;
 Max_Sp_String_Items : constant Natural := 40;
 Max_Sp_Abs_Time_Items : constant Natural := 10;
 Max_Sp_Rel_Time_Items : constant Natural := 10;

 Max_Sp_Fp_Elements : constant Integer := Max_Sp_Fp_Items;
 Max_Sp_Int_Elements : constant Integer := Max_Sp_Int_Items;
 Max_Sp_Dis_Elements : constant Integer := Max_Sp_Discrete_Items;
 Max_Sp_Unsigned_Elements : constant Integer := Max_Sp_Unsigned_Items;
 Max_Sp_String_Elements : constant Integer := Max_Sp_String_Items;
 Max_Sp_Abs_Time_Elements : constant Integer := Max_Sp_Abs_Time_Items;
 Max_Sp_Rel_Time_Elements : constant Integer := Max_Sp_Rel_Time_Items;

 Sp_Start_Address : System.Address;

 Sp_Data_Valid : constant Boolean := True;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

42

 -- ==

 type Object is new Fc_Executive_Interface.Object with private;

 type Reference is access all Object'Class;

 type View is access constant Object'Class;

 subtype Data_Array is System_Types.Byte_Array (1 .. 4);

 type Data is new Data_Item.Object
 with record
 Value : Data_Array;
 end record;

 type Item_Buffer is array (Integer range <>) of Data;

 --====================================--

 package Fp_Repository is new Generic_Repository
 (Data_Type => Interfaces.Ieee_Float_32,
 Default_Value => 0.0,
 Max_Data_Elements => Max_Fp_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Fp_Elements);

 --====================================--

package Int_Repository is new Generic_Repository
 (Data_Type => Interfaces.Integer_32,
 Default_Value => 0,
 Max_Data_Elements => Max_Int_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Int_Elements);

 --====================================--

package Discrete_Repository is new Generic_Repository
 (Data_Type => Boolean,
 Default_Value => False,
 Max_Data_Elements => Max_Dis_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Dis_Elements);

 --====================================--

package Unsigned_Repository is new Generic_Repository
 (Data_Type => Interfaces.Unsigned_32,
 Default_Value => 0,
 Max_Data_Elements => Max_Unsigned_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Unsigned_Elements);

 --====================================--

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

43

package String_Repository is new Generic_Repository
 (Data_Type => Repository_Types.String_20,
 Default_Value => (others => ' '),
 Max_Data_Elements => Max_String_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_String_Elements);

 --====================================--

package Absolute_Timestamp_Repository is new Generic_Repository
 (Data_Type => Timestamp_Adt.Absolute_Timestamp,
 Default_Value => Timestamp_Adt.Default_Absolute_Timestamp,
 Max_Data_Elements => Max_Abs_Time_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Abs_Time_Elements);

 --====================================--

 package Relative_Timestamp_Repository is new Generic_Repository
 (Data_Type => Timestamp_Adt.Relative_Timestamp,
 Default_Value => Timestamp_Adt.Nil_Relative_Timestamp,
 Max_Data_Elements => Max_Rel_Time_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Rel_Time_Elements);

 package Timestamp_Repository renames Absolute_Timestamp_Repository;

 --====================================--

 procedure Register_As_Consumer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : out Abstract_Repository.View);

 procedure Register_As_Producer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : out Abstract_Repository.Reference);

 procedure Unregister
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : in out Abstract_Repository.Reference);

 function Number_Of_Elements
 (The_Item : in Configuration_Id_Adt.Repository_Id) return Integer;

 function Number_Of_Elements
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp)
 return Integer;

 function Get_Current (The_Item : in Configuration_Id_Adt.Repository_Id) return Data;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

44

 procedure Get_Buffer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Number_Of_Items : in out Integer;
 The_Buffer : out Item_Buffer);

 procedure Get_Buffer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp;
 The_Buffer : out Item_Buffer;
 Number_Of_Items : out Integer);

 procedure Initialize
 (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode);

Private --===

 type Kind is
 (Floating_Point,
 Signed_Integer,
 Discrete,
 Unsigned_Integer,
 Bounded_String,
 Abs_Timestamp,
 Rel_Timestamp);

 for Kind use (Floating_Point => 0,
 Signed_Integer => 1,
 Discrete => 2,
 Unsigned_Integer => 3,
 Bounded_String => 4,
 Abs_Timestamp => 5,
 Rel_Timestamp => 6);

 for Kind'Size use Interfaces.Unsigned_8'Size;

 type Object is new Fc_Executive_Interface.Object with null record;

end Repository; --===

4.3.15.1 Package Repository Type Declarations

type Object is new Fc_Executive_Interface.Object with private;

 type Reference is access all Object'Class;

 type View is access constant Object'Class;

 subtype Data_Array is System_Types.Byte_Array (1 .. 4);

 type Data is new Data_Item.Object
 with record
 Value : Data_Array;
 end record;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

45

 --
 -- The item queue contains the multiple values of a data item.
 --
 type Item_Buffer is array (Integer range <>) of Data;

private

 type Kind is
 (Floating_Point,
 Signed_Integer,
 Discrete,
 Unsigned_Integer,
 Bounded_String,
 Abs_Timestamp,
 Rel_Timestamp);

 for Kind use (Floating_Point => 0,
 Signed_Integer => 1,
 Discrete => 2,
 Unsigned_Integer => 3,
 Bounded_String => 4,
 Abs_Timestamp => 5,
 Rel_Timestamp => 6);

 for Kind'Size use Interfaces.Unsigned_8'Size;

 type Object is new Fc_Executive_Interface.Object with null record;

4.3.15.2 Package Repository Package Instantiations

4.3.15.2.1 package Fp_Repository

The Fp_Repository Class will provide a common data interface for floating point data being passed between the
application and the input/output objects. This class is a specialization of the abstract Repository Class extending the
concept of the repository for Floating-point data.

 package Fp_Repository is new Generic_Repository
 (Data_Type => Interfaces.Ieee_Float_32,
 Default_Value => 0.0,
 Max_Data_Elements => Max_Fp_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Fp_Elements);

4.3.15.2.2 package Int_Repository

The Int_Repository Class will provide a common data interface for integer data being passed between the application
and the input/output objects. This class is a specialization of the abstract Repository Class extending the concept of
the repository for integer data.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

46

 package Int_Repository is new Generic_Repository
 (Data_Type => Interfaces.Integer_32,
 Default_Value => 0,
 Max_Data_Elements => Max_Int_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Int_Elements);

4.3.15.2.3 package Discrete_Repository

The Discrete_Repository Class will provide a common data interface for discrete data being passed between the
application and the input/output objects. This class is a specialization of the abstract Repository Class extending the
concept of the repository for discrete data.

 package Discrete_Repository is new Generic_Repository
 (Data_Type => Boolean,
 Default_Value => False,
 Max_Data_Elements => Max_Dis_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Dis_Elements);

4.3.15.2.4 package Unsigned_Repository

The Unsigned_Repository Class will provide a common data interface for unsigned data being passed between the
application and the input/output objects. This class is a specialization of the abstract Repository Class extending the
concept of the repository for unsigned data.

 package Unsigned_Repository is new Generic_Repository
 (Data_Type => Interfaces.Unsigned_32,
 Default_Value => 0,
 Max_Data_Elements => Max_Unsigned_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Unsigned_Elements);

4.3.15.2.5 package String_Repository

The Unsigned_Repository Class will provide a common data interface for string data being passed between the
application and the input/output objects. This class is a specialization of the abstract Repository Class extending the
concept of the repository for string data.

 package String_Repository is new Generic_Repository
 (Data_Type => Repository_Types.String_20,
 Default_Value => (others => ' '),
 Max_Data_Elements => Max_String_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_String_Elements);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

47

4.3.15.2.6 Package Absolute_Timestamp_Repository and Relative_Timestamp_Repository

The Timestamp_Repository Class will provide a common data interface for time data being passed between the
application and the input/output objects. This class is a specialization of the abstract Repository Class extending the
concept of the repository for timestamp data.

 package Absolute_Timestamp_Repository is new Generic_Repository
 (Data_Type => Timestamp_Adt.Absolute_Timestamp,
 Default_Value => Timestamp_Adt.Default_Absolute_Timestamp,
 Max_Data_Elements => Max_Abs_Time_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Abs_Time_Elements);

 package Relative_Timestamp_Repository is new Generic_Repository
 (Data_Type => Timestamp_Adt.Relative_Timestamp,
 Default_Value => Timestamp_Adt.Nil_Relative_Timestamp,
 Max_Data_Elements => Max_Rel_Time_Elements,
 Special_Pool_Enabled => True,
 Special_Pool_Address => Sp_Start_Address,
 Special_Pool_Data_Valid => Sp_Data_Valid,
 Max_Sp_Data_Elements => Max_Sp_Rel_Time_Elements);

 package Timestamp_Repository renames Absolute_Timestamp_Repository;

4.3.15.3 Package Repository Subprograms

4.3.15.3.1 procedure Register_As_Consumer

This operation will allow a client to register as a consumer of a specified data item. The client is returned a view
pointer to the repository holding the data item. This view pointer will only allow the user to read the data item values.
The data appears as read only to the client.

 procedure Register_As_Consumer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : out Abstract_Repository.View);

4.3.15.3.2 procedure Register_As_Producer

This operation will allow a client to register as a producer of a specified data item. The client is returned a reference
pointer to the repository holding the data item. This reference pointer will allow the user to update the data item
values. Only one producer is allowed for each data item repository.

 procedure Register_As_Producer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : out Abstract_Repository.Reference);

4.3.15.3.3 procedure Unregister

This operation will allow a client to unregister as a producer of an Item. This is required when a client terminates or
becomes deallocated.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

48

 procedure Unregister
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 The_Reference : in out Abstract_Repository.Reference);

4.3.15.3.4 function Number_Of_Elements {1}

The Number_Of_Elements operation will return the total number of data values in the repository for the data item.

 function Number_Of_Elements(The_Item : in Configuration_Id_Adt.Repository_Id) return Integer;

4.3.15.3.5 function Number_Of_Elements {2}

The Number_Of_Elements operation will return the number of data values in the repository for the data item with
timestamps within the start and end times specified.

 function Number_Of_Elements
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp)
 return Integer;

4.3.15.3.6 function Get_Current

The Get operation will return the most current data for the data item. This routine will log an error when called for data
types for which the data cannot be converted to four unsigned bytes.

 function Get_Current (The_Item : in Configuration_Id_Adt.Repository_Id) return Data;

4.3.15.3.7 procedure Get_Buffer {1}

The Get_Buffer operation will return a buffer containing the data for the specified data item. The actual number of
items placed in the buffer is returned to the caller along with the buffer. The output buffer is filled starting with the
most recent item in the repository. Note Strings are not handled.

 procedure Get_Buffer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Number_Of_Items : in out Integer;
 The_Buffer : out Item_Buffer);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

49

4.3.15.3.8 procedure Get_Buffer {2}

The Get Buffer operation will return a buffer containing the data for the specified data item for the requested period of
time. The specified end time must be no later than the current time. The actual number of items placed in the buffer is
returned to the caller along with the buffer. The output buffer is filled starting with the most recent item in the
repository. Note Strings are not handled.

If no end time is specified, the current time will be used.

 procedure Get_Buffer
 (The_Item : in Configuration_Id_Adt.Repository_Id;
 Start_Time : in Timestamp_Adt.Relative_Timestamp;
 End_Time : in Timestamp_Adt.Relative_Timestamp :=
 Timestamp_Adt.Nil_Relative_Timestamp;
 The_Buffer : out Item_Buffer;
 Number_Of_Items : out Integer);

4.3.15.3.9 procedure Initialize

This operation will initialize all software constant repositories and all configuration data specified repositories.

 procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode);

4.3.16 package Data_Logger

The Data Logger interacts with the rest of the system to provide control of the requests to log data and the
subsequent regular recording of this requested data.

package Data_Logger is -- ===

 type Object is tagged null record;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 Max_Number_Of_Requests : constant Integer := 30;

end Data_Logger; --==

4.3.16.1 Package Data_Logger Type Declarations

 type Object is tagged null record;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

For an explanation of the types Object, Reference, and View see section 4.3.1.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

50

4.3.17 package Dl_Interface_Types

The Data Logger's interface for providing service routines that can initiate logging requires data types that can be
used by other subsystems. This package defines the types necessary to make a log request.

with Interfaces;
with Timestamp_Adt;
with Repository;
with Configuration_Id_Adt;
with Data_Validity_Adt;
with System_Types;

package Dl_Interface_Types is -- ==

 type Request_Types is (Single, Timed, Free);

 for Request_Types use (Single => 0, Timed => 1, Free => 2);

 subtype Log_Update_Rate is Interfaces.Unsigned_32 range 1 .. 1_000; --ms
 subtype Log_Duration is Interfaces.Unsigned_32 range 0 .. 60_000; --ms

end Dl_Interface_Types; -- ===

4.3.17.1 Package DL_Interface_Types Type Declarations

 type Request_Types is (Single, Timed, Free);

 for Request_Types use (Single => 0, Timed => 1, Free => 2);

 subtype Log_Update_Rate is Interfaces.Unsigned_32 range 1 .. 1_000; --ms
 subtype Log_Duration is Interfaces.Unsigned_32 range 0 .. 60_000; --ms

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

51

4.3.18 package Data_Logger.Data_Logger_Interface

The Interface class provides service routines for each subsystem to request the logging of subsystem specific data, a
data set, the event itself and/or a text message. If a request was made to freely log a data set, for an indefinite
period, the subsystem that requested logging may request termination of the log request.

A subsystem specific service routine is provided to facilitate the use of data formats that are unique to each
subsystem.

with Dl_Interface_Types;
with Interfaces;
with Configuration_Id_Adt;

use type Interfaces.Unsigned_32;

package Data_Logger.Data_Logger_Interface is -- ===============================

 function Log_Data_Set
 (Data_Set : in Configuration_Id_Adt.Data_Set_Id;
 Request_Type : in Dl_Interface_Types.Request_Types := Dl_Interface_Types.Single;
 Update_Rate : in Dl_Interface_Types.Log_Update_Rate := 1_000;
 Time_Before : in Dl_Interface_Types.Log_Duration := 0;
 Time_After : in Dl_Interface_Types.Log_Duration := 0)
 return Natural;

 procedure Stop_Logging_Data_Set (Request_Id : in Natural);

end Data_Logger.Data_Logger_Interface; --======================================

4.3.18.1 Package Data_Logger.Data_Logger_Interface Subprograms

4.3.18.1.1 function Log_Data_Set

This function is called to initiate the logging of any data set. The Data Set is identified by a configuration id. The
request type determines how much data is to be logged for the period (Time_Before to Time_After the current time)
set once, at next timeframe the logging process is active. A Request can only be terminated by a specific request to
stop logging.

 function Log_Data_Set
 (Data_Set : in Configuration_Id_Adt.Data_Set_Id;
 Request_Type : in Dl_Interface_Types.Request_Types := Dl_Interface_Types.Single;
 Update_Rate : in Dl_Interface_Types.Log_Update_Rate := 1_000;
 Time_Before : in Dl_Interface_Types.Log_Duration := 0;
 Time_After : in Dl_Interface_Types.Log_Duration := 0) return Natural;

4.3.18.1.2 procedure Stop_Logging_Data_Set

A specific data set log request can be terminated immediately using the request Id

 procedure Stop_Logging_Data_Set (Request_Id : in Natural);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

52

4.3.19 Package Vendor_IO

This package defines the routine Log_Private_Data that allows a vendor to log private data packet. The maximum
length of a single packet is 4096 bytes as by the constant Max_Data_Size_in_Bytes, the actual size may be less.

The 3PTD will usually write several Private Data packets to the DTU card during a given flight. When the packets are
retrieved at the Ground Station, there is no guaranteed way to know the order in which the packets were written to the
DTU card. Therefore, it is the responsibility of the caller (i.e. the Vendor) to provide its own internal method of
sequencing/packet identification needed to properly reconstruct the data when retrieving the data on the ground
station.

with Interfaces;

with Timestamp_Adt;
with System_Types;

package Vendor_IO is --===

 Max_Data_Size_in_Bytes : constant := 4096;

 subtype Cage_Code_Type is System_Types.Byte_Array(1..8);

 --====================================--

 procedure Log_Private_Data
 (Vendor_Id : in Interfaces.Unsigned_32;
 Cage_Code : in Cage_Code_Type;
 Timestamp : in Timestamp_Adt.Relative_Timestamp;
 Data : in System_Types.Byte_Array);

end Vendor_IO; --==

4.3.19.1 Package Vendor_IO Subprograms

This procedure is used to take an array of bytes and log them to the DTU card. The Vendor_ID is a unique identifier
supplied by the 3PTD. The Cage_Code is supplied by the 3PTD and is used post flight to retrieve the data from the
ground station. The Timestamp is usually taken at the time of logging or acquisition. It is a relative timestamp, relative
to the last DCOL packet written to the card.

If the vendor desires, he can use the routine Absolute_Reference_Timestamp in the package Timestamp_Adt to
generate an absolute timestamp and place it directly in the data being written to the card.

procedure Log_Private_Data
 (Vendor_Id : in Interfaces.Unsigned_32;
 Cage_Code : in Cage_Code_Type;
 Timestamp : in Timestamp_Adt.Relative_Timestamp;
 Data : in System_Types.Byte_Array);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

53

4.4 Examples of Using PPU Interfaces Package

The example is comprised of two main classes the Gonkulator (pronounced Gonk-u-lator), and the Imaginary Sensor.
Each main class has a factory associated with it. The Gonkulator is a singleton object, it functions as a sensor
manager, it simply takes readings from the various sensors, reads a number of repository items pertaining to current
flight parameters and then logs private data packets if need be. The factories function as the creators and initializes
of the Gonkulator and sensor objects. The ten units of code described are as follows:

The Gonkulator Package Specification
The Gonkulator Package Body

The Imaginary_Sensor Package Specification
The Imaginary_Sensor Package Body

The Gonkulator_Factory Package Specification
The Gonkulator_Factory Package Body

The Sensor_Factory Package Specification
The Sensor_Factory Package Body

The Debug_IO Package Specification
The Debug_IO Package Body

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

54

4.4.1 Example Overview

The dynamic behavior of the software always starts with program elaboration; this is an Ada term and describes the
initialization of the software system as a whole. Elaboration brings all of the type, object and program unit definitions
and declarations into existence, all elaboration completes before the first line of code is executed in the HUMS_Main
program unit. This guarantees that all entities exist before they are used anywhere in the software. One aspect of
program elaboration that takes place and effects the examples and all HUMS software for that matter is the execution
of the sequence of statements (if any) in the package bodies. This is the code between the 'begin', 'end' statements of
the package body. The factories make use of this mechanism for their initialization.

Execution of the examples starts with the elaboration of the Gonkulator_Factory and the Sensor_Factory. These
factories both perform the same operation; they make a call to Executive.Register to register the factory objects so
they can be called during the various phases of initialization.

Figure 4-3 Factory Registration with the Executive

The behavior continues with the Executive eventually calling the Initialize routine in the two factories. The Initialize
routine in the executive is called three different times, once for each phase of initialization, Creation, Reference
Resolution and Hardware Initialization. The factories in turn call the individual routines within the Gonkulator and
Imaginary_Sensor packages that correspond to that specific phase of initialization.

It should be noted that the factory bodies contain or hold the actual instances of Gonkulator and all of the instances of
the Imaginary Sensors. This is because most uses of the objects only require a reference or pointer to the objects.
This is also useful in that the factory is a logical place to dispense reference pointer to the objects when they are
needed.

package Gonkulator_Factory is

package body Gonkulator_Factory is
.
.
.
begin
 Executive.Register (
end Gonkulator_Factory;

package Sensor_Factory is

package body Sensor_Factory is
.
.
.
begin
 Executive.Register (
end Sensor_Factory;

package Executive is
…
 procedure Register
…
end Executive;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

55

Figure 4-4 Executive Factory Initialization Sequence

The only tricky part of initialization is the phase referred to as Reference Resolution. This phase requires that the
Gonkulator gain access to the Sensor objects that it is going to manage. To accomplish this, the Gonkulator
package body makes a call to the procedure Sensor_Factory.Sensor_Reference using a Sensor ID number
obtained from its configuration data. This routine returns a pointer (access type) to the Sensor Objects that it will need
to collect data from.

package body Executive is

procedure Initialize_All_Factories is
begin
. . .
for All_Factories loop
 Initialize (The_Factory =>
 The_Mode =>
end loop;

end Initialize_All_Factories;
. . .
end Executive;

package body Gonkulator_Factory is

procedure Initialize (The_Factory :...
 The_Mode : ...
begin

 case The_Mode is
 when Create_Objects => ...
 when Resolve_References => ...
 when Initialize_Hw => ...
 end case;

end Initialize;

end Gonkulator_Factory;

package Gonkulator is
 ...
 procedure Initialize (...

 procedure Resolve_References (...

 procedure Initialize_Hw (...
 ...
end Gonkulator;

package Gonkulator is
 ...
 procedure Initialize (...

 procedure Resolve_References (...

 procedure Initialize_Hw (...
 ...
end Gonkulator;

package body Sensor_Factory is

procedure Initialize (The_Factory :...
 The_Mode : ...
begin

 case The_Mode is
 when Create_Objects => ...
 when Resolve_References => ...
 when Initialize_Hw => ...
 end case;

end Initialize;

end Sensor_Factory;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

56

The main dynamic behavior of the system is accomplished by calls to the Update routines in both the Gonkulator
object and the Sensor objects. Within the Update routine the Gonkulator simply reads values from the repository and
reads values from the Sensors. The Gonkulator and its Sensor also conduct their reading and writing of the Sensor
values via a Semaphore based protocol. The examples make use of the semaphore logic to show the dynamic
registering of producers of repository items.

4.4.2 package Gonkulator

with System;
with System.Address_To_Access_Conversions;
with Interfaces;

with Cc_Executive_Interface;
with Abstract_Repository;
with Repository;
with Imaginary_Sensor;

package Gonkulator is -- ==

 ----------------------- Type Declarations ------------------------------

 type Object is new Cc_Executive_Interface.Object with private;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 ---------------------- Operation Declarations --------------------------

 procedure Update (The_Object : access Object);

 procedure Shutdown (The_Object : access Object);

 procedure Initialize (The_Object : access Object;
 Base_Address : in System.Address;
 The_Config_Id : in Interfaces.Unsigned_32);

 function Is_Initialized (The_Object : access Object) return Boolean;

 procedure Resolve_References (The_Object : access Object);

 procedure Initialize_Hw (The_Object : access Object);

private --==

 Max_ID_Count : constant := 25;

 type ID_Array is
 array
 (Interfaces.Unsigned_32 range 1..Max_ID_Count)
 of Interfaces.Unsigned_32;

 for ID_Array'Size use Max_ID_Count * 32;

 --

 type Ref_Array is
 array
 (Interfaces.Unsigned_32 range 1..Max_ID_Count)
 of CC_Executive_Interface.Reference;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

57

 --

 type Repository_Ref_Array is
 array
 (Interfaces.Unsigned_32 range 1..Max_ID_Count)
 of Repository.Discrete_Repository.Reference;

 --

 type Repository_View_Array is
 array
 (Interfaces.Unsigned_32 range 1..Max_ID_Count)
 of Repository.Discrete_Repository.View;

 --

 type Value_Array is
 array
 (Interfaces.Unsigned_32 range 1..Max_ID_Count)
 of Interfaces.Unsigned_16;

 --

 type Config_Data_Record is
 record
 Vendor_ID : Interfaces.Unsigned_32; -- Vendor Id
 Num_of_Sensors : Interfaces.Unsigned_32; -- Array Size
 Sensor_ID_List : ID_Array; -- Array of sensor config Ids.
 Semaphore_ID_List : ID_Array; -- Array of read semaphore Ids.
 Weight_on_Wheels_Id : Interfaces.Unsigned_32; -- Repositiory Id
 Indicated_Airspeed_Id : Interfaces.Unsigned_32; -- Repositiroy Id
 Fuel_Quantity_Aux_1_Id : Interfaces.Unsigned_32; -- Repositiroy Id
 Fuel_Quantity_Aux_2_Id : Interfaces.Unsigned_32; -- Repositiroy Id
 Fuel_Quantity_Main_1_Id : Interfaces.Unsigned_32; -- Repositiroy Id
 Fuel_Quantity_Main_2_Id : Interfaces.Unsigned_32; -- Repositiroy Id
 end record;

 for Config_Data_Record use
 record
 Vendor_ID at 0 range 0..31;
 Num_of_Sensors at 4 range 0..31;
 Sensor_ID_List at 8 range 0..799;
 Semaphore_ID_List at 108 range 0..799;
 Weight_on_Wheels_Id at 208 range 0..31;
 Indicated_Airspeed_Id at 212 range 0..31;
 Fuel_Quantity_Aux_1_Id at 216 range 0..31;
 Fuel_Quantity_Aux_2_Id at 220 range 0..31;
 Fuel_Quantity_Main_1_Id at 224 range 0..31;
 Fuel_Quantity_Main_2_Id at 228 range 0..31;
 end record;

 for Config_Data_Record'Size use 232 * 8; -- Just to make sure !

 -- Allows safe address to pointer conversion for dynamic overlay of data structures.
 package Config_Data_Pack is new System.Address_To_Access_Conversions(Config_Data_Record);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

58

 --

 type Object is new Cc_Executive_Interface.Object with
 record
 Config_Data : Config_Data_Pack.Object_Pointer;
 Sensor_Ref : Ref_Array;
 Semaphore_Ref : Repository_Ref_Array; -- Used to register as producer.
 Semaphore_View : Repository_View_Array; -- Used to register as consumer.
 Sensor_Value : Value_Array;
 Weight_on_Wheels_View : Repository.Discrete_Repository.View;
 Indicated_Airspeed_View : Repository.FP_Repository.View;
 Fuel_Quantity_Aux_1_View : Repository.Unsigned_Repository.View;
 Fuel_Quantity_Aux_2_View : Repository.Unsigned_Repository.View;
 Fuel_Quantity_Main_1_View : Repository.Unsigned_Repository.View;
 Fuel_Quantity_Main_2_View : Repository.Unsigned_Repository.View;
 end record;

end Gonkulator; --==

4.4.3 package body Gonkulator

with System;
with System.Storage_Elements;
with Timestamp_Adt;
with Configuration_Id_Adt;
with Repository;
with Debug_IO;
with Sensor_Factory;
with Vendor_IO;

package body Gonkulator is -- ===

 Package_Name : constant String := "Gonkulator";

 Im_Initialized : Boolean := False;

 --====================================--

procedure Update (The_Object : access Object) is

 Module_Name : constant String := ".Update";
 The_Semaphore : Repository.Discrete_Repository.Data;

 Weight_on_Wheels : Boolean;
 Indicated_Airspeed : Interfaces.IEEE_Float_32;
 Fuel_Quantity_Aux_1 : Interfaces.Unsigned_32;
 Fuel_Quantity_Aux_2 : Interfaces.Unsigned_32;
 Fuel_Quantity_Main_1 : Interfaces.Unsigned_32;
 Fuel_Quantity_Main_2 : Interfaces.Unsigned_32;

 use type Repository.Discrete_Repository.Reference;
 use type Interfaces.IEEE_Float_32;
 use type Interfaces.Unsigned_32;

begin --

 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 Sensor_Read_Loop:
 for I in Interfaces.Unsigned_32 range 1..The_Object.Config_Data.Num_of_Sensors loop
 -- Loop throuth the sensors and get their readings !!!

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

59

 if
 Repository.Discrete_Repository.Get_Current
 (The_Object.Semaphore_View(I)).Value = False
 then

 -- Register with the Repository as a Producer of the semaphore.
 Repository.Register_As_Producer
 (The_Item => The_Object.Config_Data.Semaphore_ID_List(I),
 The_Reference => Abstract_Repository.Reference(The_Object.Semaphore_Ref(I)));

 if -- Check to see if we registered properly.
 The_Object.Semaphore_Ref(I) /= null
 then

 -- Set the semaphore value.
 The_Semaphore.Value := True;

 -- Write it to the repository.
 Repository.Discrete_Repository.Put
 (At_Repository => The_Object.Semaphore_Ref(I),
 The_Item => The_Semaphore);

 -- Get the sensors value
 The_Object.Sensor_Value(I) :=
 Imaginary_Sensor.Get_Sensor_Value (Imaginary_Sensor.Reference(The_Object.Sensor_Ref(I)));

 -- Now Unregister as a producer of the semaphore.
 Repository.UnRegister
 (The_Item => The_Object.Config_Data.Semaphore_ID_List(I),
 The_Reference => Abstract_Repository.Reference(The_Object.Semaphore_Ref(I)));

 end if;

 end if;

 end loop Sensor_Read_Loop;

 -- Read the rest of the repository items.

 Weight_on_Wheels := Repository.Discrete_Repository.Get_Current
 (The_Object.Weight_on_Wheels_View).Value;

 Indicated_Airspeed := Repository.Fp_Repository.Get_Current
 (The_Object.Indicated_Airspeed_View).Value;

 Fuel_Quantity_Aux_1 := Repository.Unsigned_Repository.Get_Current
 (The_Object.Fuel_Quantity_Aux_1_View).Value;

 Fuel_Quantity_Aux_2 := Repository.Unsigned_Repository.Get_Current
 (The_Object.Fuel_Quantity_Aux_2_View).Value;

 Fuel_Quantity_Main_1 := Repository.Unsigned_Repository.Get_Current
 (The_Object.Fuel_Quantity_Main_1_View).Value;

 Fuel_Quantity_Main_2 := Repository.Unsigned_Repository.Get_Current
 (The_Object.Fuel_Quantity_Main_2_View).Value;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

60

 -- Process the Reporitory items
 if
 not Weight_on_Wheels
 and then
 Indicated_Airspeed /= 0.0
 and then
 Fuel_Quantity_Aux_1 < 10
 and then
 Fuel_Quantity_Aux_2 < 10
 and then
 Fuel_Quantity_Main_1 < 10
 and then
 Fuel_Quantity_Main_2 < 10
 then

 -- The logging of a private data packet.
 Vendor_IO.Log_Private_Data
 (Vendor_Id => The_Object.Config_Data.Vendor_ID,
 Cage_Code => (8,7,6,5,4,3,2,1),
 Timestamp => Timestamp_Adt.Relative_Timestamp_Is,
 Data => (77,97,121,32,68,97,121,32,77,97,121,32,68,97,121));
 -- M a y D a y M a y D a y
 else
 Debug_IO.Put_Line (Package_Name & Module_Name & " Life is good ah ?");
 end if;

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");

end Update; ------------------------------------

 --====================================--
 -- Shutdown --
 --====================================--

procedure Shutdown (The_Object : access Object) is
 Module_Name : constant String := ".Shutdown";
begin --
 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");
end Shutdown; ------------------------------------

 --====================================--
 -- Initialize --
 --====================================--

procedure Initialize (The_Object : access Object;
 Base_Address : in System.Address;
 The_Config_Id : in Interfaces.Unsigned_32) is

 Module_Name : constant String := ".Initialize";

 use System.Storage_Elements;
 use Configuration_Id_Adt;

 Instance_Id : Storage_Offset := Storage_Offset(Instance_Is(The_Config_Id));
 Instance_Shift : Storage_Offset := Boolean'Pos(Instance_Id /= 0);
 The_Data_Address : System.Address := Base_Address;

 begin ---

 Debug_IO.Put_Line (Package_Name & Module_Name & " Start");

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

61

 -- Calculate the address of this objects data item
 The_Data_Address := The_Data_Address +
 ((Instance_ID - Instance_Shift) * -- Offset Multiplier
 Config_Data_Record'Max_Size_in_Storage_Elements);

 -- This takes The_Data address and converts it to a pointer.
 The_Object.Config_Data := Config_Data_Pack.To_Pointer(The_Data_Address);

 Im_Initialized := True;

 Debug_IO.Put_Line (Package_Name & Module_Name & " End");

end Initialize; ---

 --====================================--
 -- Is_Initialized --
 --====================================--

function Is_Initialized (The_Object : access Object) return Boolean is
 Module_Name : constant String := ".Is_Initialized";
begin ---
 Debug_IO.Put_Line (Package_Name & Module_Name & " Start");

 Debug_IO.Put_Line (Package_Name & Module_Name & " End");
 return Im_Initialized;
end Is_Initialized; ---

 --====================================--
 -- Resolve_References --
 --====================================--

procedure Resolve_References (The_Object : access Object) is
 Module_Name : constant String := ".Resolve_References";
begin --

 Debug_IO.Put_Line (Package_Name & Module_Name & " Start");

 for I in 1..The_Object.Config_Data.Num_of_Sensors loop

 -- Get all of the references to the Imaginary Sensors.
 Sensor_Factory.Sensor_Reference
 (Id => The_Object.Config_Data.Sensor_Id_List(I),
 Ref => The_Object.Sensor_Ref(I));

 -- Get all of the read only Repository items setup.
 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Semaphore_ID_List(I),
 The_Reference => Abstract_Repository.View(The_Object.Semaphore_View(I)));

 end loop;

 -- Now Register all the rest of the Repositiroy Items.
 -- Register the configuration Id and get back a view.
 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Weight_on_Wheels_Id,
 The_Reference => Abstract_Repository.View(The_Object.Weight_on_Wheels_View));

 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Indicated_Airspeed_Id,
 The_Reference => Abstract_Repository.View(The_Object.Indicated_Airspeed_View));

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

62

 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Fuel_Quantity_Aux_1_Id,
 The_Reference => Abstract_Repository.View(The_Object.Fuel_Quantity_Aux_1_View));

 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Fuel_Quantity_Aux_2_Id,
 The_Reference => Abstract_Repository.View(The_Object.Fuel_Quantity_Aux_2_View));

 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Fuel_Quantity_Main_1_Id,
 The_Reference => Abstract_Repository.View(The_Object.Fuel_Quantity_Main_1_View));

 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Fuel_Quantity_Main_2_Id,
 The_Reference => Abstract_Repository.View(The_Object.Fuel_Quantity_Main_2_View));

 Debug_IO.Put_Line (Package_Name & Module_Name & " End");

end Resolve_References; ------------------------------------

 --====================================--
 -- Initialize_Hw --
 --====================================--

procedure Initialize_Hw (The_Object : access Object) is
 Module_Name : constant String := ".Initialize_Hw";
begin ---
 Debug_IO.Put_Line (Package_Name & Module_Name & " Start");

 -- If any hardware initializaition is required it takes place here.
 null;

 Debug_IO.Put_Line (Package_Name & Module_Name & " End");
end Initialize_Hw; ------------------------------------

end Gonkulator; --==

4.4.4 package Imaginary_Sensor

with Interfaces;
with System.Address_To_Access_Conversions;
with Cc_Executive_Interface;

with Repository;

package Imaginary_Sensor is --===

 type Object is new Cc_Executive_Interface.Object with private;
 type Reference is access all Object'Class;
 type View is access constant Object'Class;

 procedure Update (The_Object : access Object);

 procedure Shutdown (The_Object : access Object);

 procedure Initialize (The_Object : access Object;
 Base_Address : in System.Address;
 The_Config_Id : in Interfaces.Unsigned_32);

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

63

 function Is_Initialized (The_Object : access Object) return Boolean;

 procedure Resolve_References (The_Object : access Object);

 procedure Initialize_Hw (The_Object : access Object);

 --====================================--

 function Get_Sensor_Value (The_Object : access Object) return Interfaces.Unsigned_16;

private --==

 type Config_Data_Record is
 record
 Sensor_Index : Interfaces.Unsigned_32;
 Sensor_Name : String(1..10);
 Semaphore_ID : Interfaces.Unsigned_32; -- Semaphore Configuration_ID.
 end record;

 for Config_Data_Record use
 record
 Sensor_Index at 0 range 0..31;
 Sensor_Name at 4 range 0..79;
 Semaphore_ID at 14 range 0..31; -- Semaphore Configuration_ID.
 end record;

 package Config_Data_Pack is new System.Address_To_Access_Conversions(Config_Data_Record);

 type Object is new Cc_Executive_Interface.Object with
 record
 Config_Data : Config_Data_Pack.Object_Pointer;
 Semaphore_Ref : Repository.Discrete_Repository.Reference;
 Semaphore_View : Repository.Discrete_Repository.View;
 end record;

end Imaginary_Sensor; --===

4.4.5 package body Imaginary_Sensor

with System.Storage_Elements;
with Configuration_Id_Adt;
with Initialization_Manager;
with Repository;
with Abstract_Repository;

with Debug_IO;

package body Imaginary_Sensor is --==

 Package_Name : constant String := "Imaginary_Sensor";

 --====================================--

 Max_Num_Sensors : constant := 25;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

64

 -- Class wide data values.
 Sensor_Value : array
 (Interfaces.Unsigned_32 range 0..Max_Num_Sensors)
 of Interfaces.Unsigned_16;

 --====================================--
 -- Read_Sensor --
 --====================================--

procedure Read_Sensor (Sensor_Index : in Interfaces.Unsigned_32) is
 use type Interfaces.Unsigned_16;
begin --

 -- Will be incremented by one each time sensor update is called.
 Sensor_Value(Sensor_Index) := Sensor_Value(Sensor_Index) + 1;

end Read_Sensor; ---

 --====================================--
 -- Update --
 --====================================--

procedure Update (The_Object : access Object) is ------------------------------

 Module_Name : constant String := ".Update";
 The_Semaphore : Repository.Discrete_Repository.Data;

 use type Repository.Discrete_Repository.Reference;

begin ---

 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 -- Can Only "Read the Sensor" if the semaphore is False.
 if
 Repository.Discrete_Repository.Get_Current
 (The_Object.Semaphore_View).Value = False
 then

 -- Register with the Repository as a Producer of the semaphore.
 Repository.Register_As_Producer
 (The_Item => The_Object.Config_Data.Semaphore_ID,
 The_Reference => Abstract_Repository.Reference(The_Object.Semaphore_Ref));

 if -- Check to see if we registered properly.
 The_Object.Semaphore_Ref /= null
 then

 -- Set the semaphore value.
 The_Semaphore.Value := True;

 -- Write it to the repository.
 Repository.Discrete_Repository.Put
 (At_Repository => The_Object.Semaphore_Ref,
 The_Item => The_Semaphore);

 -- Read this particular Sensor.
 Read_Sensor(Sensor_Index => The_Object.Config_Data.Sensor_Index);

 -- Now Unregister as a producer of the semaphore.
 Repository.UnRegister
 (The_Item => The_Object.Config_Data.Semaphore_ID,

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

65

 The_Reference => Abstract_Repository.Reference(The_Object.Semaphore_Ref));

 end if;

 end if;

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");

end Update; ---

 --====================================--
 -- Shutdown --
 --====================================--

procedure Shutdown (The_Object : access Object) is
 Module_Name : constant String := ".Shutdown";
begin --
 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");
end Shutdown; ------------------------------------

 --====================================--
 -- Initialize --
 --====================================--

procedure Initialize (The_Object : access Object;
 Base_Address : in System.Address;
 The_Config_Id : in Interfaces.Unsigned_32) is

 Module_Name : constant String := ".Initialize";

 use System.Storage_Elements;
 use Configuration_Id_Adt;
 use type Interfaces.Unsigned_32;

 Instance_Id : Storage_Offset := Storage_Offset(Instance_Is(The_Config_Id));
 Instance_Shift : Storage_Offset := Boolean'Pos(Instance_Id /= 0);
 The_Data_Address : System.Address := Base_Address;

begin --

 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 -- Calculate the address of this objects data item
 The_Data_Address := The_Data_Address +
 ((Instance_ID - Instance_Shift) * -- Offset Multiplier
 Config_Data_Record'Max_Size_in_Storage_Elements);

 -- This takes The_Data_Address and converts it to a pointer for an overlay.
 The_Object.Config_Data := Config_Data_Pack.To_Pointer(The_Data_Address);

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");

end Initialize; ---

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

66

 --====================================--
 -- Is_Initialized --
 --====================================--

function Is_Initialized (The_Object : access Object) return Boolean is
 Module_Name : constant String := ".Is_Initialized";
begin ---
 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");
 return False;
end Is_Initialized; ---

 --====================================--
 -- Resolve_References --
 --====================================--

procedure Resolve_References (The_Object : access Object) is
 Module_Name : constant String := ".Resolve_References";
begin --

 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 -- Register with the Repository as a consumer of the semaphore.
 Repository.Register_As_Consumer
 (The_Item => The_Object.Config_Data.Semaphore_ID,
 The_Reference => Abstract_Repository.View(The_Object.Semaphore_View));

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");

end Resolve_References; ------------------------------------

 --====================================--
 -- Initialize_Hw --
 --====================================--

procedure Initialize_Hw (The_Object : access Object) is
 Module_Name : constant String := ".Initialize_Hw";
begin ---
 Debug_IO.Put_Line (Package_Name & Module_Name & "Start");

 -- If any hardware initializaition has to take place it can take place here.
 null;

 Debug_IO.Put_Line (Package_Name & Module_Name & "End");
end Initialize_Hw; ------------------------------------

 --====================================--
 -- Get_Sensor_Value --
 --====================================--

function Get_Sensor_Value
 (The_Object : access Object) return Interfaces.Unsigned_16 is
begin --
 return Sensor_Value(The_Object.Config_Data.Sensor_Index);
end Get_Sensor_Value; --

end Imaginary_Sensor; --===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

67

4.4.6 package Gonkulator_Factory

with Interfaces;
with FC_Executive_Interface;
with System_States;

package Gonkulator_Factory is --===

 type Object is new FC_Executive_Interface.Object with private;

 procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode);

private --===

 type Object is new Fc_Executive_Interface.Object with null record;

end Gonkulator_Factory; --===

4.4.7 package body Gonkulator_Factory

with System;
with System_Types;
with Executive;
with Initialization_Manager;
with CC_Executive_Interface;
with Gonkulator;

package body Gonkulator_Factory is --==

 --
 -- The factory is a singleton class, therefore only one object instance is
 -- allowed (defined) for this class.
 --
 This_Factory_Object : aliased Object;

 --
 -- Define the 'reference' variable to be used by this instance when
 -- registering with the executive.
 --
 This_Factory_Reference : Fc_Executive_Interface.Reference := This_Factory_Object'Access;

 Gonkulator_Config_Id : constant Interfaces.Unsigned_32 := 16#0A00_0001#;

 Gonkulator_Object : aliased Gonkulator.Object;

 Gonkulator_Reference : CC_Executive_Interface.Reference;

procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode) is

 Registration_Status : System_Types.Return_Status;

 The_Data_Address : System.Address;
 The_Data_Lenght : Natural := 0;

 use type System_States.Initialization_Mode;

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

68

begin --

 -- Create the Objects that this factory manages !!!
 case The_Mode is --------------------------------------

 when System_States.Create_Objects =>

 -- Create the reference to the Gonkulator Instance.
 Gonkulator_Reference := Gonkulator_Object'Access;

 -- Delivers the base address of the Gonkulator Data Table.
 Initialization_Manager.Get_Configuration
 (The_Table => Gonkulator_Config_Id,
 Pre_Cert_Address => The_Data_Address,
 Pre_Cert_Length => The_Data_Lenght);

 -- Call the Initialize for the Gonkulator.
 Gonkulator.Initialize (The_Object => Gonkulator_Object'Access,
 Base_Address => The_Data_Address,
 The_Config_Id => Gonkulator_Config_Id);

 -- Register the Gonkulator with the Executive.
 Executive.Register
 (The_Object => Gonkulator_Reference,
 With_Config_Id => Gonkulator_Config_Id,
 The_Status => Registration_Status);

 when System_States.Resolve_References =>

 null;

 when System_States.Initialize_Hw =>

 null;

 end case; --

end Initialize; --

begin --================== Gonkulator_Factory ================================

 --
 -- Register this factory with the executive.
 --
 Executive.Register (The_Factory => This_Factory_Reference);

end Gonkulator_Factory; --===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

69

4.4.8 package Sensor_Factory

with Interfaces;
with FC_Executive_Interface;
with CC_Executive_Interface;
with System_States;

package Sensor_Factory is --===

 type Object is new FC_Executive_Interface.Object with private;

 procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode);

 procedure Sensor_Reference (Id : in Interfaces.Unsigned_32;
 Ref : out CC_Executive_Interface.Reference);

private --===

 type Object is new Fc_Executive_Interface.Object with null record;

end Sensor_Factory; --===

4.4.9 package body Sensor_Factory

with System;

with System_Types;
with Executive;
with Initialization_Manager;
with Imaginary_Sensor;

package body Sensor_Factory is --==

 --
 -- The factory is a singleton class, therefore only one object instance is
 -- allowed (defined) for this class.
 --
 This_Factory_Object : aliased Object;

 --
 -- Define the 'reference' variable to be used by this instance when
 -- registering with the executive.
 --
 This_Factory_Reference : Fc_Executive_Interface.Reference := This_Factory_Object'Access;

 --====================================--

 -- There are a total of 12 Sensors defined,(obtained from Goodrich) !!!!
 Sensor_Id_Lo : constant Interfaces.Unsigned_32 := 16#0B00_0001#;
 Sensor_Id_Hi : constant Interfaces.Unsigned_32 := 16#0B00_000C#;

 type Sensor_Info is
 record
 Obj : aliased Imaginary_Sensor.Object;
 Ref : CC_Executive_Interface.Reference;
 end record;

 Sensor_Array : array (Sensor_Id_Lo..Sensor_Id_Hi) of aliased Sensor_Info;

 --====================================--

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

70

procedure Initialize (The_Factory : access Object;
 The_Mode : in System_States.Initialization_Mode) is

 Registration_Status : System_Types.Return_Status;

 The_Data_Address : System.Address;
 The_Data_Lenght : Natural := 0;

 use type System_States.Initialization_Mode;

begin --

 -- Create the Objects that this factory manages !!!
 case The_Mode is --------------------------------------

 when System_States.Create_Objects =>

 -- Delivers the base address of the Sensor Config Data Table.
 Initialization_Manager.Get_Configuration
 (The_Table => Sensor_Id_Lo,
 Pre_Cert_Address => The_Data_Address,
 Pre_Cert_Length => The_Data_Lenght);

 -- There are a number of Sensors, get their references.
 for I in Sensor_Id_Lo .. Sensor_Id_Hi loop

 -- Get the reference for each sensor object.
 Sensor_Array(I).Ref := Sensor_Array(I).Obj'Access;

 -- Call Initialize for each sensor.
 Imaginary_Sensor.Initialize
 (The_Object => Sensor_Array(I).Obj'Access,
 Base_Address => The_Data_Address,
 The_Config_Id => I);

 -- Register all of the Imaginary Sensors with the Executive.
 Executive.Register
 (The_Object => Sensor_Array(I).Ref,
 With_Config_Id => I,
 The_Status => Registration_Status);

 end loop;

 when System_States.Resolve_References => null;

 when System_States.Initialize_Hw => null;

 end case; --

end Initialize; --

procedure Sensor_Reference (Id : in Interfaces.Unsigned_32;
 Ref : out CC_Executive_Interface.Reference) is
begin --
 Ref := Sensor_Array(Id).Ref;
end Sensor_Reference; --

begin --====================== Sensor_Factory ================================

 --
 -- Register this factory with the executive.
 --
 Executive.Register (The_Factory => This_Factory_Reference);

end Sensor_Factory; --===

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

71

4.4.10 package Debug_IO

with Interfaces;

package Debug_IO is --==

 function To_Hex (N : Interfaces.Unsigned_8) return String;

 function To_Hex (N : Interfaces.Unsigned_16) return String;

 function To_Hex (N : Interfaces.Unsigned_32) return String;

 procedure Put (S : in String);

 procedure Put_Line (S : in String);

 procedure Draw_Line;

end Debug_IO; --===

4.4.11 package body Debug_IO

with Interfaces;
with System.Raven_Io;
with Unchecked_Conversion;

package body Debug_IO is --==

 use type System.Bit_Order;

 -- Type needed for Hex Conversion Routines --

 type Nibbles is mod 16;
 for Nibbles'Size use 4;

 --

 type Byte_Array is array (0..1) of Nibbles;
 for Byte_Array'Size use 8;

 type Word_Array is array (0..3) of Nibbles;
 for Word_Array'Size use 16;

 type Double_Word_Array is array (0..7) of Nibbles;
 for Double_Word_Array'Size use 32;

 --

 function Conv_US8_to_BA is new
 Unchecked_Conversion (Interfaces.Unsigned_8, Byte_Array);

 function Conv_US16_to_WA is new
 Unchecked_Conversion (Interfaces.Unsigned_16, Word_Array);

 function Conv_US32_to_DWA is new
 Unchecked_Conversion (Interfaces.Unsigned_32, Double_Word_Array);

 --

 Map : array (Nibbles range 0..15) of Character := "0123456789ABCDEF";

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

72

 X : Natural := 7 * Boolean'Pos(System.Default_Bit_Order=System.High_Order_First);

 --
 -- Hex String for Unsigned_32 --
 --
 function To_Hex (N : in Interfaces.Unsigned_32) return String is
 DWA : Double_Word_Array := Conv_US32_to_DWA(N);
 S : String(1..13);
 begin --

 S(1..13) := ('1', '6', '#',
 Map(DWA(abs(X-7))),Map(DWA(abs(X-6))),
 Map(DWA(abs(X-5))),Map(DWA(abs(X-4))),
 '_',
 Map(DWA(abs(X-3))),Map(DWA(abs(X-2))),
 Map(DWA(abs(X-1))),Map(DWA(abs(X-0))),
 '#');
 return S;

end To_Hex; ---

 --
 -- Hex String for Unsigned_16 --
 --
 function To_Hex (N : in Interfaces.Unsigned_16) return String is
 WA : Word_Array := Conv_US16_to_WA(N);
 S : String(1..8);
 begin --

 S(1..8) := ('1', '6', '#',
 Map(WA(abs(X-3))),Map(WA(abs(X-2))),
 Map(WA(abs(X-1))),Map(WA(abs(X-0))),
 '#');
 return S;

end To_Hex; ---

 --
 -- Hex String for Unsigned_8 --
 --
 function To_Hex (N : in Interfaces.Unsigned_8) return String is
 BA : Byte_Array := Conv_US8_to_BA(N);
 S : String(1..6);
 begin --

 S(1..6) := ('1', '6', '#', Map(BA(abs(X-1))),Map(BA(abs(X-0))), '#');

 return S;

end To_Hex; ---

 --
 -- Put --

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

73

 --
 procedure Put (S : in String) is ---------------------------------

 begin --

 System.Raven_IO.Put (S);

 end Put; ---

 --
 -- Put_Line --
 --
 procedure Put_Line (S : in String) is ----------------------------

 begin --

 System.Raven_IO.Put_Line (S);

 end Put_Line; --

 --
 -- Put_Line --
 --

procedure Draw_Line is ------------------
 S : constant String := (1..80 => '-');
begin -----------------------------------

 System.Raven_IO.Put_Line (S);

end Draw_Line; --------------------------

end Debug_IO; --===

4.5 Availability of PPU SW Templates and Public Class Packages

Third-Party software developers may obtain electronic copies of the PPU Client Class Package, PPU Factory Class
Package, and related public packages from Goodrich by contacting the following:

 HUMS Contract Manager
 Goodrich Aerospace
 100 Panton Road
 Vergennes, VT 05491
 (802) 877-2911

Please reference Goodrich Part Number 3019070 - IMD/COSSI Flight program Ada Specifications.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

74

5 VPU Embedded Software Interfaces

5.1 Overview

The vibration processing unit (VPU) consists of a two-board assembly used to acquire and process vibration
(accelerometer) and timing (tachometer) data. One board performs signal acquisition (the data acquisition module -
DAM). The sampled data is transferred to a 32 Mbyte DRAM memory area, which is located on the other board (the
signal processing module - SPM). Up to eight channels of data may be sampled simultaneously during each
acquisition. All signal processing occurs within the signal processing module, executed on two TMS320C31 Digital
Signal Processors. The data analysis software is written primarily in the C language, with certain performance-critical
functions being written in TMS320C31 assembly language.

There are three major software components within the VPU:

Executive / Interface (EI) - Proprietary software used to control / collect data acquired from the data acquisition
module, communicate with the PPU, and act as the main executive for all the VPU software.

Drivetrain Diagnostics (DTD) - Proprietary software used to perform specialized data analyses on the sampled
vibration data. Interaction with the EI is through established interfaces.

Third-Party Software (P3) - Software developed by a third-party technology developer (3PTD) used to extend the
capabilities of the existing VPU analysis software. It operates as an adjunct to the DTD software. Interaction with the
DTD and EI is through established interfaces (detailed in section 5.5.3).

A 3PTD can add functionality to the VPU by using the existing inter-CSCI interfaces to request and obtain raw sensor
data and to communicate computational results to the PPU. The following scenario would be typical:

1) The PPU commands an analysis whose identifier corresponds to a P3 function.
2) The VPU EI receives the command and determines that the VPU DTD must supply the relevant acquisition

parameters.
3) The VPU DTD determines that the P3 is ultimately responsible, and passes the request along.
4) The VPU P3 supplies the requested acquisition parameters, which are simply passed through the DTD back to

the EI.
5) The EI performs the acquisition, and then invokes the DTD to process the raw data.
6) The DTD again simply passes the request along to the P3.
7) The P3 performs the analysis (according to the analysis identifier) and passes its results through the DTD back to

the EI.
8) The EI returns the results to the PPU.

5.2 Constraints

PPU EI DTD P3

VPU

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

75

The following hardware factors constrain the P3 software:

1) Channel multiplexing (section 5.5.4).
2) Magnitude/phase error (section 5.5.2.2, PR_GET_CALIB_FACTOR).
3) Sample rate limitations (section 5.5.4).
4) Memory limitations (section 5.3).
5) Watchdog timer requirements (section 5.4).
6) Multiprocessing synchronization.

The following software factors, constrain the P3 software:

1) Inability to process the raw data in real time (section 5.4).
2) Requirement to link (and otherwise peacefully coexist) with the existing EI and DTD CSCIs (section 5.6).
3) Documentation, traceability, and testability requirements (must conform to DO-178B level B).

5.3 Memory

The DSPs in the VPU produce a 24-bit address, and access 32-bit data words. There are three primary memory
blocks in the address space, detailed in sections 5.3.1, 5.3.2, and 5.3.3.

5.3.1 Flash EPROM

There is a single 0.5 Mword (512 Kword) block of Flash EPROM, shared by both DSPs. It incurs a nominal 3 wait
states for each uncontended access.

It is partitioned into two spaces: 256 Kwords for boot and flight code, and 256 Kwords for configuration data. At
power-up/reset, all flight code (including P3) is copied into SRAM, for execution speed.

3PTD's may use up to 64 Kwords for flight code, and 64 Kwords for configuration data.

The P3 configuration data may be accessed as follows:

 static int *DTD_cfg, *P3_cfg; /* DTD, P3 config base addresses */
 #ifdef MSVC
 extern int cfg[]; /* configuration array */
 DTD_cfg = cfg + (8 + cfg[4] + cfg[5]);
 #else
 DTD_cfg = (int *)(0x440000 + *((int *)0x47fff8) + *((int *)47fff9));
 #endif
 P3_cfg = DTD_cfg + DTD_cfg[12];

5.3.2 SRAM

There are two 0.5 Mword (512 Kword) blocks of SRAM, one block dedicated to each DSP. It incurs 1 wait state for
each access.

All VPU flight code, stack, and scratchpad data needs to fit within SRAM. 128 Kwords are available for unrestricted
P3 usage, including the P3 flight code copied from Flash.

In addition, 3PTD's may use up to 128 Kwords starting at the global symbolic address "ar". However, this memory is
not dedicated, in the sense that if another application (EI or DTD) runs an analysis, the memory is overwritten.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

76

However, CONSECUTIVE P3 analyses can depend on this memory remaining intact. An important property of this
shared memory area is that it is aligned on a 16 Kword boundary (see section 5.5.2.2, FFT).

The stack is sized at 8 Kwords, of which P3 may consume a maximum of 2 Kwords.

5.3.3 DRAM

There is a single 8.0 Mword (8192 Kword) block of DRAM, shared by both DSPs. It incurs a nominal 3 wait states for
each uncontended access.

Of the 8 Mwords, only 7.6 are used for data acquisition. The remaining 0.4 Mword is used for miscellaneous
functions, including auxiliary data storage and interprocessor communications. The following memory is
available for dedicated P3 usage:

- 42 Kwords in section "INTER_DSP"
- 49 Kwords in section "RES_DSP1"

Just prior to a data acquisition, the EI calculates how much memory is required for each channel based on the
requested sample rate and acquisition time, and allocates consecutive, contiguous blocks of DRAM starting from the
first available address (the global symbol "GV_SPL"). The only time the raw data section of DRAM is written to is
during acquisitions and possibly by the applications. If the same application (P3 for instance) runs
CONSECUTIVELY, it can depend on the entire raw data section remaining intact.

5.4 Timing

The VPU does not perform rate-driven processing. Rather, it performs processing-on-demand. As each analysis is
commanded from the PPU, an acquisition is performed, data is analyzed, and the results are passed to the PPU.

The DSP's are clocked at 40 MHz, which translates to a 50 nsec instruction cycle (20 MIPS).

All analyses must execute in less than 15 minutes, at which time the watchdog timer resets the processor. Note that
BOTH PROCESSORS can be running the entire 15 minutes.

5.5 Interfaces

5.5.1 Definitions

In all subsequent interface definitions, unless specifically stated otherwise, each data item is assumed to be a 32-bit
word, whose formatting is explicitly stated. The following formats are used frequently:

- Unsigned refers to a generic unsigned integer.
- Signed refers to a two's-complement integer.
- Float refers to a TMS320C31 single precision floating point value.
- 2-packed refers to a word packed with two 16-bit elements, possibly zero-padded on the right (at the end of a

vector of such elements).
- 4-packed refers to a word packed with four 8-bit elements, possibly zero-padded on the right (at the end of a

vector of such elements).
- Structure refers to a generic collection of data requiring further definition.
- Vector refers to a sequence of identically-formatted data elements.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

77

- Xxx+ refers to a vector of format xxx data elements.
- Pointer refers to a memory word address.
- Xxx* refers to a pointer to format xxx.
- Offset refers to an unsigned word offset, relative to the start of the configuration directory (see section 5.3.1).

It is used in preference to a pointer, so the configuration table can be relocated easily.

The data structures defined in this section are generic in the sense that they are used to simplify the definition of the
specific higher-level data structures in the interface definitions to follow.

An analysis_identifier (unsigned), is formatted as follows:

- type (unsigned, bits 31-12): 0x0001C-0x0001F for P3 applications.
- index (unsigned, bits 11-0): available for P3 use.

An identifier (unsigned) is formatted as follows:

- type (unsigned, bits 31-24): available for P3 use.
- block count (unsigned, bits 23-16): used to allow physically scattered data to be collected as one logical

descriptor (see section 5.5.3.2).

 index (unsigned, bits 15-0): available for P3 use.

A list structure is formatted as follows:

- count (unsigned), of data words to follow.
- data (padded to word boundary).

A descriptor structure is formatted as follows:

- identifier (as defined above)
- for each block counted in identifier:

- word count (signed, > 0 for local data, < 0 for non-local data, = 0 reserved).
- local data, or pointer to non-local data.

5.5.2 Software Libraries

5.5.2.1 COTS Libraries

The VPU software may make use of the standard C library functions supported on the TI TMS320C3x processors.
These libraries provide standard math and string functions.

5.5.2.2 Other Libraries and Functions

The following functions are defined and implemented in the EI/DTD software, and are available for P3 use:

//==
void FFT
 (float *IOR, /* (IO) Real input/output vector */
 float *IOI, /* (IO) Imaginary input/output vector */
 unsigned Log2n, /* (I) Log2 (vector size) */
 int Dir, /* (I) Direction (-1=reverse, 1=forw) */

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

78

 unsigned Mode); /* (I) Mode (0=complex, 1=real) */
//==
// Notes:
// 1) The IOR and IOI vectors must be located on Log2n-bit address
// boundaries (to permit hardware bit-reversed addressing).
// 2) Space for the IOI vector must be supplied even for real
// transforms (Mode=1), but it need not be initialized.
//==

//==
void getraw
 (int *In, /* (I) Input vector (2-packed) */
 unsigned Isize, /* (I) # data elements in the input vector */
 float Mult, /* (I) Multiplicative scale factor */
 float *Out); /* (O) Output vector (n words required) */
//==
// Notes:
// 1) Convert 2-packed signed raw input to scaled float output.
// Mult=1 means output data is scaled from -32768 (-1.25V)
// to +32766 (+1.25V)).
// 2) Isize is even (no partial raw data words).
//==

//==
void PR_GET_CALIB_FACTOR
 (unsigned Sens, /* (I) Sensor code (0-61, see section 5.5.4) */
 unsigned Chan, /* (I) ADC channel (0-7, see section 5.5.4) */
 unsigned Type, /* (I) Always set to 4 (ANALOG_CHAIN) */
 unsigned Gain, /* (I) Desired calibration gain setting */
 /* (1, 2, 4, 8,...,128) */
 float Freq, /* (I) Desired calibration frequency */
 /* (< 1 kHz) */
 float *Magn, /* (O) Correction modulus at input frequency */
 float *Phase); /* (O) Correction phase at input frequency */
//==
// Notes:
// 1) Magn is the multiplier for converting from ADC input (+/- 1.25V)
// to LRU input voltage (at the specified step-gain/frequency). It
// has a nominal value of 1/G, where G is the value in the signal-
// type / gain table in section 5.5.4. Note that it does not
// incorporate the step-gain factor itself.
// 2) Phase is the additive correction (in radians) at the specified
// step-gain/frequency.
//==

//==
int FN_DSP_ID (void) /* returns the DSP ID (1=master, 0=slave) */
//==

//===
#define unt unsigned
#define spf float
/* Optimized (assembly) vector routines (i=0; i<N; i++) */
void copy (void *In, unt N, void *Out); /* In[i] --> Out[i] */
void fill (unt N, spf *Out, spf B); /* B --> Out[i] */
void ramp (unt N, spf *Out, spf B, spf M); /* M*i+B --> Out[i] */

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

79

void vadj (spf *In, unt N, spf B, spf M); /* M*In[i]+B --> In[i] */
void vrev (void *In, unt N); /* In[N-i-1] <--> In[i] */
void vcmp (spf *In, unt N, spf *Out); /* In[i]>=Out[i] --> Out[i] */
void vadd (spf *In, unt N, spf *Out); /* Out[i]+In[i] --> Out[i] */
void vsub (spf *In, unt N, spf *Out); /* Out[i]-In[i] --> Out[i] */
void vmul (spf *In, unt N, spf *Out); /* Out[i]*In[i] --> Out[i] */
void vabs (spf *In, unt N); /* abs(In[i]) --> In[i] */
spf vsum (spf *In, unt N); /* sum(In[i]) --> caller */
spf vmin (spf *In, unt N); /* min(In[i]) --> caller */
spf vmax (spf *In, unt N); /* max(In[i]) --> caller */
/* Non-optimized (C) vector routines (i=0; i<N; i++) */
void vdiv (spf *In, unt N, spf *Out); /* Out[i]/In[i] --> Out[i] */
void vsqrt (spf *In, unt N); /* sqrt(In[i]) --> In[i] */
void vsin (spf *In, unt N); /* sin(In[i]) --> In[i] */
void vcos (spf *In, unt N); /* cos(In[i]) --> In[i] */
//===

5.5.3 CSCI Interfaces

The P3 CSCI is co-resident on the VPU with the DTD and Executive / Interface CSCIs. During normal system
operation, the Executive invokes the DTD CSCI, which in turn invokes the P3 CSCI using one of the interfaces
defined in this section.

5.5.3.1 P3_Parameters

//===
//PROTOTYPE:
// void P3_Parameters
// (unsigned AID, /* (I) Analysis identifier */
// unsigned *Stat, /* (I) Status (0=normal, 1=invalid AID) */
// unsigned *IFC, /* (O) Indexer frequency counter (note 1) */
// unsigned *AFC, /* (O) Accelerometer frequency counter (note 1) */
// unsigned *Gain, /* (O) 8 actual gain settings (note 2) */
// float *Gadj, /* (O) Auto-gain adjustment time (seconds) */
// unsigned *Head, /* (O) Auto-gain headroom (#bits), 16 msb’s for */
// /* tach, 16 lsb’s for accel */
// unsigned *Offs, /* (O) 8 DC offset compensation enables (note 2) */
// unsigned *Sens, /* (O) 12 sensor codes (note 3) */
// float *Acq, /* (O) Acquisition time (seconds) */
// float *Proc); /* (O) Processing time (seconds) */
//===

Notes (see section 5.5.4 for further details):
1) Hardware counter/divisor settings for establishing the acquisition
 frequency of indexers or accels.
2) One element for each ADC channel (0-7). Each Gain element must be set to
 0, 1, 2, 4, 8, 16, 32, 64, or 128; each Offs element to 0 or 1.
3) Elements 0-7 correspond to ADC channels 0-7, elements 8-11 must be
 set to 0.

5.5.3.2 P3_Analysis

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

80

//===
//PROTOTYPE:
// void P3_Analysis
// (unsigned AID, /* (I) Analysis identifier */
// unsigned *Samp, /* (I) 12 actual sample counts (note 1) */
// unsigned *Gain, /* (I) 8 actual gain settings (note 2) */
// unsigned *In, /* (I) 12 raw data pointers (note 1) */
// unsigned *Stat, /* (O) 0=normal, 1=invalid AID */
// unsigned *Out); /* (O) Result descriptor pointers (<1024) */
//===

Notes (see section 5.5.4 for further details):
1) Elements 0-7 correspond to ADC channels 0-7, elements 8-11 are not
 used.
2) One hardware gain setting for each ADC channel (0-7). It will be
 set to 1, 2, 4, 8, 16, 32, 64, or 128.

The Out parameter points to a 1024-word block which contains a
descriptor count and 1-1023 descriptor pointers. The aggregate total
block count from all result descriptors must not exceed 4096.

Upon completion of this function, the EI resolves all pointers
encountered in the descriptors, and assembles the referenced data blocks
into a contiguous data stream for transmission to the PPU. The data
from the slave DSP immediately follows that from the master.

Both instances of P3_Analysis (one per DSP) are invoked by the EI to
support parallel processing.

5.5.3.3 P3_Data

//===
//PROTOTYPE:
// void P3_Data
// (unsigned AID, /* (I) Analysis identifier */
// unsigned *Samp, /* (I) 12 actual sample counts */
// unsigned *Gain, /* (I) 8 actual gain settings */
// unsigned *In, /* (I) 12 raw data pointers */
// unsigned PPU1, /* (I) Passed directly from PPU command */
// unsigned PPU2, /* (I) Passed directly from PPU command */
// unsigned PPU3, /* (I) Passed directly from PPU command */
// unsigned PPU4, /* (I) Passed directly from PPU command */
// unsigned PPU5, /* (I) Passed directly from PPU command */
// unsigned *Stat, /* (O) 0=normal, 1=invalid AID */
// unsigned *Out); /* (O) Result descriptor (7 words required) */
//===

Notes:
1) Elements 0-7 correspond to ADC channels 0-7 (see section 5.5.4),
 elements 8-11 are not used.
2) One hardware gain setting for each ADC channel (0-7). See section
 5.5.4 for details.

Parameters PPU1 through PPU5 are passed unaltered from the PPU.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

81

Parameters Samp, Gain, and In are supplied by the EI.

5.5.4 Signal Conditioning and Acquisition

The VPU channel multiplexing is arranged as follows (pick one sensor from each column):

 ch0 ch1 ch2 ch3 ch4 ch5 ch6 ch7
 --
 MRA1 MRA2 MRA3 MRA4 MRA5 MRA6 RT1 RT2
 EA1 EA2 EA3 EA4 EA5 EA6 ET1 ET2
 DTA1 DTA2 DTA3 DTA4 DTA5 DTA6 DTA7 DTT1
 DTA8 DTA9 DTA10 DTA11 DTA12 DTA13 DTA14 DTT2
 DTA15 DTA16 DTA17 DTA18 DTA19 DTA20 DTA21 MIC1
 DTA22 DTA23 DTA24 DTA25 DTA26 DTA27 DTA28 ET3
 DTA29 DTA30 DTA31 DTA32 TRA1 TRA2 OIS1 SIS1

The following sensor abbreviations are used:

 RT rotor tach MRA main rotor accel
 ET engine tach TRA tail rotor accel
 DTT drive train tach EA engine accel
 SIS shaft index sensor DTA drive train accel
 OIS optical index sensor MIC microphone

The following sensor codes are used in P3_Parameters:

 RT 1-2 MRA 13-18
 ET 3-5 TRA 19-20
 DTT 6-7 EA 21-26
 SIS 11 DTA 27-58
 OIS 12 MIC 59

The following table gives the signal gain between the LRU connector and the ADC input. The ADC has a full-scale
range of [-1.25, 1.25] volts.

 Signal Type | Gain
 -------------------|-------
 RT,ET,DTT,SIS,OIS | 0.0775
 MRA,TRA | 1.23
 EA,DTA | 0.25
 MIC | 0.56

The following table gives the frequency response of each channel type:

 | High Pass (Hz) | Low Pass (Hz) |
 Channel Type | -3 dB | -3 dB |
 -------------|----------------|---------------|
 tach/index | - | - |
 MRAn | 0.4 | 1.7k |
 TRAn | 0.4 | 3.5k |
 EAn | 0.4 | 9.5k |
 DTAn | 0.4 | 56k |
 MICn | 10 | 56k |

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

82

 Note: for MICn, the -3 dB column is actually -2 dB.

Acquisition sample rate in Hz can be set as follows:

 20000000
 -------- n = 2..64
 64*n

All accels have same sample rate, and tachs can have 1x, 2x, 4x, or 8x the accel sample rate (provided the accel
divisor n is divisible by the tach oversample factor (1,2,4,8)).

Gain can be set to "auto", or "fixed", on a channel-by-channel basis. Automatic gain is commanded by setting the
"Gain" parameter to 0, and the choices for fixed gain are 1, 2, 4, 8, 16, 32, 64, or 128. The "headroom" for automatic
gain control is adjustable as an integer number of bits, using the "Head" parameter. In general, a headroom of N bits
means that the gain is set as high as possible, such that the peak signal value does not exceed 2^(-N) of full scale.
For each auto-gain acquisition, there is a special adjustment acquisition that precedes it, whose purpose is to sample
the current signal strength. The length of the adjustment acquisition is determined by the "Gadj" parameter.

The "Offs" parameter (DC offset compensation enable) is also set independently for each channel. It must be set to 0
for fixed gain, and 1 for automatic gain.

The ADC for each channel stores a 16 bit number into memory (DRAM) for each sample acquired. The msb of this
value is not used, and the 15 lsb's are encoded as as two's-complement, representing a voltage range of -1.25V to
1.25V. Two samples are packed into one memory word, the high half being written first.

5.5.5 Sample P3 Application

A sample P3 application which might be embedded into the VPU is presented below. This routine obtains data from
the acquistion memory area, performs various conversion and mathematical operations on the data, and returns the
result to the DTD CSCI.

The code also details a method for using the established interfaces to transfer limited amounts of data from the PPU
to the VPU.

The method entails using the P3_Data interface in a non-standard but perfectly valid way. The PPU end of the
transaction would be handled in an action list, and would consist of the following steps:

1) Issue a special "download" acquire and process command, say 0x1FFFF. The P3 code in the VPU would be

responsible for intercepting this particular ID, performing a minimal acquisition, and returning a minimal reply.
See the example below for particulars.

2) Issue a sequence of data read commands, each containing the "dummy" acquisition ID used in step (1). Each
command has three parameters that are not used by the PPU, and these words will contain the P3 initialization
data. In the example given below, it is assumed that the low half of the "PPU3" parameter contains the starting
offset into a hypothetical initialization array. This offset would be incremented by 3 in each successive data read
command.

A maximum of four VPU commands can be issued each second. Since only three words of data are transferred in
each command, it takes over eight seconds to transfer 100 words.

To minimize the risk of being aborted due to a capture window change, the initialization sequence should be
performed AFTER the main acquisitions, if at all possible. In this case, step (1) can be omitted, and the dummy code
in P3_Parameters and P3_Analysis is no longer necessary.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

83

To minimize the time impact of sending this data, all possible VPU processing should be done prior to reception of all
the initialization data (during the 250 msec idle period between reception of the next VPU data read command).

//==
//MODULE DECLARATIONS
//==

#include <stdlib.h>
#include <math.h>

#define unt unsigned int
#define spf float

void PR_GET_CALIB_FACTOR (unt Sens, unt Chan, unt Type, unt Gain,
 spf Freq, spf *Magn, spf *Phase);
void getraw (int *In, unt Isize, spf Mult, spf *Out);
void FFT (spf *IOR, spf *IOI, unt Log2n, int Dir, unt Mode);

extern spf ar[]; /* 16k-aligned SRAM */
static spf init[99]; /* initialization data from PPU */

//==
//FUNCTION DECLARATIONS
//==

/***/
 void P3_Parameters /* */
 (unt AID , /* (I) Analysis identifier */
 unt *Stat, /* (I) Status (0=normal, 1=invalid AID) */
 unt *IFC , /* (O) Indexer frequency counter */
 unt *AFC , /* (O) Accelerometer frequency counter */
 unt *Gain, /* (O) 8 actual gain settings */
 spf *Gadj, /* (O) Auto-gain adjustment time (seconds) */
 unt *Head, /* (O) Auto-gain headroom (#bits), 16 msb’s */
 /* for tach, 16 lsb’s for accel */
 unt *Offs, /* (O) 8 DC offset compensation enables */
 unt *Sens, /* (O) 12 sensor codes */
 spf *Acq , /* (O) Acquisition time (seconds) */
 spf *Proc) /* (O) Processing time (seconds) */
/***/
{ unt i;

 Stat = 0; / good status */
 Gadj = 0.1; / gain adjustment time (not used) */
 Head = 1; / gain headroom (not used) */
 for (i=0; i<8; i++) Gain[i] = 1; /* fixed unity gain */
 for (i=0; i<8; i++) Offs[i] = 0; /* no DC offset adjust */
 for (i=0; i<12; i++) Sens[i] = 0; /* init no channels */

 /* Check for special download acquisition */
 if (AID==0x1ffff) /* check analysis ID */
 { *IFC = 64; /* lowest possible... */
 AFC = 64; / ...sample rates */
 Sens[0] = 27; /* only 1 sensor (DTA1) */
 Acq = 0.1; / short acquisition time */
 Proc = 0.1; / short processing time */

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

84

 return;
 }

 /* Example of typical acquisition setup */
 IFC = 3; / indexer sample rate (104 kHz) */
 AFC = 3; / accel sample rate (104 kHz) */
 for (i=0; i<7; i++) Sens[i] = 27+i; /* sensor code (7 DT accels) */
 Sens[7] = 6; /* ...(1 DT tach) */
 Acq = 0.1; / acquisition time */
 Proc = 5; / processing time */
}

/***/
 void P3_Analysis /* */
 (unt AID, /* (I) Analysis identifier */
 unt *Samp, /* (I) 12 actual sample counts */
 unt *Gain, /* (I) 8 actual gain settings */
 unt *In, /* (I) 12 raw data pointers */
 unt *Stat, /* (O) 0=normal, 1=invalid AID */
 unt *Out) /* (O) Result descriptor pointers (<1024) */
/***/
{ unt i;
 spf mf; /* multiplicative scale factor */
 spf mc, pc; /* magnitude and phase corrections */
 spf *r, *xr, *xi; /* workspace pointers */

 /* Download acquisition or slave DSP, null result */
 if ((AID==0x1ffff) || (FN_DSP_ID() == 0))
 { *Stat = 0;
 Out[0] = 0;
 return;
 }

 /* Set up workspace pointers */
 r = ar; /* result block */
 xr = ar + 0x1000; /* real data */
 xi = ar + 0x2000; /* imag data */

 /* Compute conversion factor for raw data: */
 /* 2500 mV full-scale ADC range */
 /* 65536 ADC bits full-scale (getraw) */
 /* 100 mV/g nominal sensor sensitivity */
 PR_GET_CALIB_FACTOR (27, 0, 4, 1, 100, &mc, &pc);
 mf = (2500 * mc) / (65536 * Gain[0] * 100);

 /* Process scaled raw data */
 getraw ((int *)In[0], 4096, mf, xr); /* get scaled raw data */
 FFT (xr, xi, 12, 1, 1); /* compute real forward FFT */
 for (i=0; i<2048; i++) r[i+2] = sqrt (xr[i]*xr[i]+xi[i]*xi[i]);

 /* Format analysis results */
 i = 0x00010000; /* identifier (1 block)... */
 r[0] = *(spf *)&i; /* ...store as unt */
 i = 2048; /* word count... */
 r[1] = *(spf *)&i; /* ...store as unt */
 Stat = 0; / good status */

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

85

 Out[0] = 1; /* one pointer... */
 Out[1] = (unt)r; /* ...to result block */
}

/***/
 void P3_Data /* */
 (unt AID, /* (I) Analysis identifier */
 unt *Samp, /* (I) 12 actual sample counts */
 unt *Gain, /* (I) 8 actual gain settings */
 unt *In, /* (I) 12 raw data pointers */
 unt PPU1, /* (I) Passed directly from PPU command */
 unt PPU2, /* (I) Passed directly from PPU command */
 unt PPU3, /* (I) Passed directly from PPU command */
 unt PPU4, /* (I) Passed directly from PPU command */
 unt PPU5, /* (I) Passed directly from PPU command */
 unt *Stat, /* (O) 0=normal, 1=invalid AID */
 unt *Out) /* (O) Result descriptor (7 words required) */
/***/
{ int i;

 /* Extract initialization data */
 i = PPU3 & 0xffff; /* mask high half (used by PPU) */
 init[i+0] = *(spf *)&PPU1; /* transfer... */
 init[i+1] = *(spf *)&PPU2; /* ...bit patterns... */
 init[i+2] = *(spf *)&PPU4; /* ...into floats */

 /* Format dummy results */
 Out[0] = 0x00010000; /* identifier (1 block) */
 Out[1] = 1; /* word count */
 Out[2] = 0; /* dummy data */
}

5.6 Development

The P3 flight code is delivered to Goodrich in the form of one or more object files. These object files must be
compatible with those produced by the Texas Instruments C Compiler Toolset, Version 5.0.

The P3 configuration data (if any) is delivered to Goodrich in the form of a binary file. Either endian is acceptable, but
must be specified.

Prior to delivery, the 3PTD may choose to use the VPU simulator (supplied by Goodrich) to debug the interfaces and
most of the internal software in a PC/Win32 environment.

The simulator environment imposes certain differences on the P3 software:

1) Absolute addresses used in the target (VPU) will not work on a PC (under Win32).
2) TI-specific compiler pragmas, such as "DATA_SECTION", will not be recognized by a typical PC compiler.
3) The C "sizeof" operator returns a word count in the TI compiler, and a byte count in a PC compiler.
4) Configuration data is accessed through pointers at absolute addresses in the target, and through the global

symbol "cfg" in the simulator (see section 5.3.1 for details).
5) Raw data is accessed through the global symbol "GV_SPL" in the target, and through the global symbol "raw" in

the simulator. Note that indirect access through pointers (like the "In" array in the P3_Analysis interface) works in
either environment.

The above differences can conveniently be incorporated in a single source file via conditional compilation.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

86

6 VME Board Interface

The HUMS IMDS OBS can support up to two (2) additional VME boards. These boards would be installed in the
Spare A and Spare B slots of the MPU Back plane. These slots accommodate 6U VME boards. Specific interfaces
for these boards are defined in the following paragraphs.

Figure 6-1 Top View of MPU Illustrating the Spare Board Slots

6.1 Power

6.1.1 Voltage

Power to each Spare slot is provided through the VME back plane. The combination of Spare boards may consume
no more than 15 W due to thermal considerations. The MPU power supply is designed to provide 5.5 Watts per board
on the 5 V supply, and a maximum of 9.5 Watts per board from the 28 V board supply.

JP1

JP0

JP2

J1

VPU

PPU

Analog/Spare B

Analog/Spare A

MPU Backplane Top View

JV1 JA1 JB1

JA0 JB0

JV2 JA2 JB2

Pow
er Supply

[FLEX AREA]

Backplane

Connector C ard

ARINC 600 Connector

Power Supply Hold-up Assem bly
Reprogram

Port
JM 1

JM 2

JS1

JS2

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

87

6.1.2 Power Up

There are no special power up provisions for boards designed to operate within the Spare board slots.

6.1.3 Power Outage

Each of the Spare board slots is wired to a discrete that signifies eminent power failure. There is a 10 ms power
holdup available to allow the boards in the Spare slots to save data, etc. prior to power failure.

6.1.4 Power Dissipation

The combined total worst-case power dissipation for both Spare slots is 15 W. This is primarily a function of the
overall system heat dissipation characteristics.

6.2 Mechanical

6.2.1 Spare Boards

Spare boards inserted into the MPU shall be form, fit and function compatible with the VME mechanical standard (see
IEEE Standard 1014-1987 and IEEE Standard 1101.2-1992). Spare boards shall be inserted into the MPU chassis
from the top as shown in the following figure. Spare boards shall utilize an optional board stiffener, extraction handles
and mechanical wedge locks per Goodrich drawing 30190-0458-01. Spare boards shall be of the standard 6U form
factor. Spare boards shall be designed for conduction cooling within the MPU chassis in accordance with IEEE
Standard 1101.02-1992 and Goodrich drawing 30190-0458-01. See Appendix B (Spare Board Signal for Assignments
and Geometry) for detailed mechanical requirements.

Figure 6-2 Representative MPU Assembly

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

88

6.2.2 Deviations
At the present time, there are no mechanical deviations supported within the Spare board design.

6.3 Connectors

6.3.1 Signals

In total, the Spare boards support three connectors:

P1 VME Connector - The standard 3-row, 96 pin VME connector used to support VME data transfer and for board
power.

P2 VME Connector - A 5-row, 160-pin VME style connector. The center row is reserved for VME data transfer. The
remaining 4 rows are wired primarily to pins on the MPU ARINC-600 connector. The mating back plane connector will
support either the recommended 5-row board connector, or the standard 3-row, 96 pin connector. Note that the pin
assignments to all 5 rows are predefined. As such, providers of boards in the Spare slots are strongly recommended
to use the appropriate 5-row board connector to have access to all the board signals.

P0 VME Connector - A 5-row, 95-pin connector allowed by the VME standard for application-specific I/O. This
connector is wired primarily to predefined pins on the MPU ARINC-600 connector. Note that the pin assignments to
all 5 rows are predefined. As such, providers of boards in the Spare slots are strongly recommended to use the
appropriate 5-row board connector to have access to all the board signals.

6.3.2 Pin Assignments

See Appendix A MPU External Connector Signal Assignment

6.4 Environmental

6.4.1 Temperature/Altitude

The operating environment for the Spare boards is defined from the following:

• DO-160C Category 4(F1), -40 0C to +55 0C
• Altitude: Sea Level to 15,000 Feet

The spare boards shall meet the requirements of this specification after exposure to an altitude of 40,000 feet in an
un-powered condition.

6.4.2 Temperature Variation

The design of the Spare Boards shall meet the test requirement of DO-160C, Section 5, Category B with low and high
operating temperatures from -40 to +55 C.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

89

6.4.3 Shock and Vibration

 Spare boards installed into the MPU shall meet the operational requirements of this specification when
subjected/exposed to the following test environments:

• DO-160C, Section 8 (Figure 8-4, Curve Y) except the vibration level shall be
5 G's from 52-2000 Hz.

• Operational shock of +/- 15 G's, 3 axes, 1/2 sinusoid of 11 ms duration.

• Crash safety levels of +/- 20 G's in forward/aft, up/down, and lateral (side to side) axes.

6.4.4 Humidity

Spare boards installed into the MPU shall meet Humidity test requirements specified in DO-160C, Section 6, Category
B equipment.

6.4.5 Sand and Dust

Spare boards installed into the MPU shall withstand, in both an operating and non-operating condition, exposure to
DO-160C Section 12, Category D.

6.4.6 Fungus

Spare boards installed into the MPU shall withstand, in both an operating and non-operating condition, exposure to
fungus growth as specified in DO-160C Section 13, Category F.

6.4.7 Salt Atmosphere

Spare boards installed into the MPU shall withstand, in both an operating and non-operating condition, exposure to
salt-sea atmosphere as specified in DO160C Section 14, Category S.

6.4.8 EMI

Spare boards installed into the MPU will meet the following EMI requirements:

6.4.8.1 Magnetic Effects

Spare boards installed into the MPU shall be designed to meet the magnetic effect requirement of DO-160C, Section
15 for Class A equipment.

6.4.8.2 Voltage Spike

Spare boards installed into the MPU shall not suffer damage and meet the requirements of this specification when
subjected to the test requirements of RTCA/DO-160C Section 17 for Category A equipment.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

90

6.4.8.3 Audio Freq. Conducted Susceptibility

Spare boards installed into the MPU shall not be susceptible to the requirements specified in Section 18 for Category
B equipment, except lower range test limit extended to 200 Hz. The test levels shall be expanded from DO-160C
levels See Figure 6-3 Audio Frequency Conducted Susceptibility Test Levels.

FREQUENCY - KHZ

.0001

.001

.01

0.1

1.0

.01 0.1 1.0 10 100

Coordinates

Freq -
KHz

Volts

0.01 1.0

0.025 1.0

0.06 0.32

0.2 0.6

0.7 0.6

1.0 0.8

1.0 1.4

15 1.4

15 0.2

40 0.0025

180 .003

NOTE: The test level at 400 Hz
and 2 KHz will be 2Vrms

AC
 V

O
LT

S
_R

M
S

VA
LU

E
O

F
EA

CH
 C

O
M

PO
N

EN
T

FR
EQ

U
EN

CY

Figure 6-3 Audio Frequency Conducted Susceptibility Test Levels

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

91

6.4.8.4 Induced Signal Susceptibility

Spare boards installed into the MPU shall not be susceptible to the EMI test environments defined in RTCA/DO-160C,
Section 19 for Category Z equipment with the range extended from 30 Hz - 400 Hz and 15kHZ - 100 kHz at test levels
shown in Figure 6-4 RS-101 Magnetic Field Radiated Susceptibility Spec. Limits

Figure 6-4 RS-101 Magnetic Field Radiated Susceptibility Spec. Limits

6.4.8.5 RF Susceptibility: Radiated and Conducted

Spare boards installed into the MPU shall not be susceptible to the EMI test environments as defined in RTCA/DO-
160C, Section 20 for Category Y equipment with scan rates and dwell times in accordance with MIL-STD-461D.
Single shield wires will be provided except for +28 VDC power, synchros, and open/ground discretes.

Frequency (Hz)

Li
m

it
Le

ve
l (

dB
pT

)

10

10

100

80

120

100 1k 10k 100k

160

140

180175 @
30Hz

165 @
400 Hz

106 @ 15
KHz

88 @ 100
KHz

15k

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

92

6.4.8.6 Emission of RF Energy
All boards installed into the MPU shall not emit RF noise in excess of the levels specified in RTCA/DO-160C, Section
21 for Category Z equipment except range extended from 10 kHz -150 kHz and 1.215 GHz -18 GHz at levels shown
in Figure 6-5 Radiated Emissions - MIL-STD-461D Lower Frequency Rage & Figure 6-6 Radiated Emissions - MIL-
STD-461D Higher Frequency Range. See MIL-STD-461D, profile Figure RE102-2.

Figure 6-5 Radiated Emissions - MIL-STD-461D Lower Frequency Rage

Figure 6-6 Radiated Emissions - MIL-STD-461D Higher Frequency Range

dB
 A

BO
VE

 1
 u

V/
M

F re q u e n c y (H z)

1 0

2 0

1 0 k 1 0 0 K 1 M

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 5 0 K

dB
 A

BO
VE

 1
 u

V/
M

F re q u e n c y (H z)

1 0

2 0

1 G 1 0 G 1 0 0 G

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 8 G

6 9

1 .1 2 5 G

4 5

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

93

6.4.8.7 Lightning Induced Transients

All boards integrated into the MPU shall operate and not suffer damage following being subjected to the EMI test
environments as defined in RTCA/DO-160C, Section 22 for Category XXE4.

The MPU may be upset during the performance of the test but shall recover when the test condition is removed.

6.4.9 Explosion Proof

Boards installed in the Spare slots shall not cause ignition if operated in an explosive atmosphere per DO-160C,
Category E, and Environment 2.

6.4.10 Waterproofness

All boards installed into the MPU shall meet the requirements for waterproofness as specified in DO-160C, Section 10
for Category W equipment.

6.5 Bus Interfaces

6.5.1 Bus Types Provided

The Spare Boards of the MPU are each provided with a VME interface.

6.5.2 Access methods, protocols

6.5.2.1 VME Access

The HUMS OBS supports VME bus A24/D32 addressing. VME bus control is provided by the PPU that acts as the
VME bus master.

The VME Bus Message interface allows any equipment on the same VME Bus as the PPU system to have read and
write access to all the PPU system data.

The VME Bus Messages will be constructed as data areas within the VME Bus address space formatted as specified
in the Data Requirements section below. The messages will be created at system initialization and default to an
invalid state. The 'data areas' manifest themselves as shared memory between the two memory boards. The slave
board must map the area to its physical memory. The bus master will map the area into its own address space. On
the masters side this does not necessarily map to physical memory, only into its addressable space.

Concurrent versus Sequential

Subject to the limitations of the VME Bus specification, concurrent access may take place to these message data
areas. The messages will all be produced by one CSCI and may be consumed by many CSCI’s.

Data integrity is maintained for all fields of the message using the “Update-In-Progress” field. A message producer
will mark the message as “Update-In-Progress” before writing, carry out the updating of all fields and then mark the
message as “Update-Not-In-Progress”.

Communication Protocol

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

94

The maximum size of a message, including header and trailing fields, will be 65535 bytes.
Each message will contain a CRC to ensure data integrity.

Data Requirements

The messages that will be transferred and their associated data rates are configurable through the Configuration
Data.

Identifier Description Units Range Accuracy Precision
Message Identifier Unique identifier

or
RITA name

N/A TBS N/A TBS

Data Size The complete size of the
message in bytes.

bytes TBS N/A 16 bits

Value The value of the data formatted
appropriately.
The format of the value field will
be specific to each Message
Identifier.

as per
Units field

specific to
each Message
Identifier

N/A TBS

Units The units of the Value field N/A TBD N/A 16 bits
Timestamp The internal P3I software CSCI

timestamp
This does not represent the
time of the VME Bus message.

TBS TBS TBS TBS

Validity The internal P3I software CSCI
validity of the Value field

N/A TBS N/A 16 bits

CRC The CRC calculated TBS N/A TBS N/A 16 bits
Update In
Progress

The allows data integrity to be
maintained, see note 2

N/A update in
progress
update not in
progress

N/A 16 bits

6.5.2.2 Signal Assignments

Note that the signal assignments provided in Appendix A are somewhat arbitrary. Most of the signals of the J*0 and
J*2 connectors marked as discretes, frequency, excitations, DC low, DC high, etc., are wired to the ARINC 600
connectors on the back of the MPU. As such, they are not presently connected to any specific signals, hence, they
can be used to support any additional bus or signal I/O required by a board in the Spare slots.

6.5.3 Limitations: Timing, Bandwidth, etc.

The limitation, such as timing, bandwidth, will be identified as part of the process of integrating the third party
technology into the MPU. Completion of the Technology Integration Questionnaire is the starting point to identification
of limitations associated with the system and the third party's technology

6.6 Configuration Data

Communication between the Spare board slots and the PPU (and hence the Data Repository, Datalog function, etc.)
is configured through the Configuration Data Tables. Providers of VME boards, which are to operate within the MPU,
need to carefully coordinate their needs with the HUMS systems integrator.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

95

7 MPU External Interfaces

7.1 Connectors

All I/O to the MPU is made through an ARINC 600 connector. The back view of the MPU connector is shown in the
following figure.

Figure 7-1 Back View of MPU ARINC 600 Connector

7.1.1 Signals

The MPU supports interfaces to the following signal types:

Discrete Input/ Output

Analog Input, including

• Analog Differential

• Analog Single Ended

Synchro

Accelerometer

ARINC CONNECTOR

JIA

15 X 10

[AnaA]

JIB

15 X 10

[VPU]

JIC

5 X 10

[Power]

JID

15 X 10

[AnaA,B]

JIE

15 X 10

[AnaA,PPU]

JIF

10 X 10

[PPU]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

96

Frequency

Tachometer

Power

Optical Tracker Pulse

Index Sensor

RTD Sensor

Each of these signal types are brought into the MPU through predefined pins. For those signals which are spare, the
signal type is arbitrary. Refer to the following section to see the pin assignments.

7.1.2 Signal Pin Assignments

See Appendix A.

7.2 Bus Interfaces

7.2.1 Bus Types

The MPU provides external interfaces to four (4) separate data busses:

• ARINC 429 - The MPU supports a total of 14 ARINC 429 receivers and 4 ARINC 429 transmitters. Either
low-speed or high-speed ARINC 429 communication is supported.

• MIL-STD-1553 - The MPU supports a single bus MIL-STD-1553, configured to either the 1553A or 1553B

variant. The MPU can be configured to be either an RT or a bus monitor. The specific configuration is
limited by aircraft specific availability.

• ARINC 717 - The MPU provides a single ARINC 717 transmitter for interfacing with instruments such as

flight data recorders. In addition, there is a single ARINC 717 repeater channel available.

• RS-422 - The MPU supports 7 RS-422 channels. Subsets of the channels can be configured as RS-232

or RS-485 busses.

These interfaces are not directly accessible to third party developers.

The amount of available (unused) serial data channels is limited by aircraft specific needs.

7.2.2 Access Methods, Protocols

Communications via the serial data busses is covered by the appropriate bus standards.

7.2.3 External Bus Interface Pin Assignments

See Appendix B, Spare Board Signal Assignment & Geometry

7.2.4 Limitations: Timing, Bandwidth, etc.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

97

The limitation, such as timing, bandwidth, will be identified as part of the process of integrating third party technology
into the MPU. Completion of the Technology Integration Questionnaire is the starting point to identification of
limitations associated with the system and the third party's technology..

7.3 Configuration Data

I/O to the MPU is configured through the MPU Configuration Data Tables. This includes both signal data and bus
data. The development of these tables require that the technology provider and the HUMS systems integrator to work
together to obtain a proper definition of the interface.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

98

8 Ground Station Interfaces

For the interfaces through which communication with the Ground Station application is achieved, please see the
following documents.

• 6000051-01-ICD-0101, Interface Control Document for the Health and Usage Management System Activity Data

File Component

• 6000051-45-ICD-0101, Interface Control Document for the HUMS Task Controller Component

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

99

9 HUMS Systems Integration Process Model

9.1 Problem Domain

The HUMS is defined to be a generic data collection and processing systems intended primarily for use with aircraft
health and usage monitoring. It has been designed to be fully configurable. As such, each aircraft utilizing a HUMS
will have its own unique configuration data. This data ultimately is used to configure / define the contents of the PPU
Data Repository, MPU processing, DTU data logging, and Ground Based System data processing and database
content. Within the domain of aircraft health and usage monitoring, it should be recognized that the HUMS will
typically deal with certain types of information:

For Example: Exceedance and Usage Data

• Airspeed
• Pitch Attitude
• Roll Attitude
• Heading Attitude
• Vertical Acceleration
• Lateral Acceleration
• Longitudinal Acceleration
• Main Rotor Speed
• Engine Torque(s)
• Gas Generator Speed(s)
• Turbine Gas Temperature(s)
• Pressure Altitude
• Radar Altitude
• Cyclic Longitudinal
• Cyclic Lateral
• Collective
• Pedal
• Pitch Rate
• Roll Rate
• Yaw Rate
• True Airspeed
• GPS Lat/Long Position
• GPS Lat/Long Velocity
• Inertial Nav Lat/Long Position
• Inertial Nav Lat/Long Velocity
• OAT
• Fuel Qty's
• Total Fuel Weight
• Cargo Weight
• Single Point Sling Weight
• Hook Release
• Sling Hoist
• WOW
• MR Brake
• Rotor Fold
• Stores Configuration
• Bat Bus Voltage

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

100

• Gen Amps
• Engine Ice On
• Transmission Oil Cool Discretes
• Inverter Overtemp
• Hydraulic Temp/Press
• Generator Fail
• Ice Detect Discrete
• APU Fail
• APU ON
• APU High Oil Temp
• Battery Temp

Engine Performance Data

• Fan Speed(s)
• Gas Generator Speed(s)
• Turbine Gas Temperature(s)
• Engine Torque(s)
• Oil Pressure(s)
• Oil Temperature(s)
• Bleed Valve State(s)
• Eng Chip(s)
• Oil Bypass Discrete(s)
• Fuel Bypass Discrete(s)

Rotor Track & Balance Data

Typically, raw accelerometer data in not normally directly available in the Data Repository. The
HUMS VPU preprocesses this data into a format used by the HUMS GBS for Rotor Track and
Balance (RTB) and related vibration data analysis. This data can be made available in the Data
Repository for download, but this action is limited by system timing and bus speed factors.

Drive Train Data

Drive train accelerometer data is not normally directly available in the Data Repository. Like the
Rotor Track and Balance Data, it is preprocessed by the VPU. This data can be made available in
the Data Repository for download, but this action is limited by system timing and bus speed factors.
In addition, a number of drive train related parameters may be found in the Data Repository:

• Combining Gearbox Oil Press
• Combining Gearbox Oil Temp
• Combining Gearbox Low Oil Temp
• Combining Gearbox Chip
• Tail Gearbox Oil Press
• Tail Gearbox Oil Press
• Tail Gearbox Chip
• Intermediate Gearbox Oil Press
• Intermediate Gearbox Oil Temp
• Intermediate Gearbox Chip
• Main Gearbox Oil Press
• Main Gearbox Oil Temp
• Main Gearbox Low Oil Temp
• Main Gearbox Chip

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

101

• Main Gearbox Low Oil Level

For each publicly available parameter in the Data Repository, the following information will be made available:

A/C Type Signal Data
Repository

Name

ID Eng.
Units

Min Max Accur. ate (Hz)

Though each aircraft utilizing a HUMS will work with this type of data, there is no generic / standard list of parameters
within the Data Repository. Each vehicle will have its own unique flavor (source, update rate, accuracy / resolution,
etc.) of information. As such, a Third-Party Technology Provider needs to become acquainted with the specific HUMS
information configured for his respective aircraft. Appendix C details current / future aircraft slated to utilize the
Goodrich HUMS. Technology Providers may obtain a list of available aircraft-specific parameters within the HUMS
Data Repository by contacting:

 HUMS Contract Manager
 Goodrich Aerospace
 100 Panton Road
 Vergennes, VT 05491
 (802) 877-2911

9.2 Responsibilities

Successful insertion of new technology in the HUMS requires close coordination between the HUMS Systems
Integrator and the Third-Party Technology Provider(s). Simply stated, it is the responsibility of the HUMS Systems
Integrator to insure that third-party technology can be efficiently inserted without reducing the operational objectives of
the HUMS. It is the responsibility of the Third-Party Technology Provider to define his interface / data needs required
to interface new technology within the HUMS. The following table lists the responsibilities of the HUMS Systems
Integrator and the Technology Providers:

PHASE HUMS SYSTEMS INTEGRATOR TECHNOLOGY PROVIDER
ANALYSIS Review / Approve Power Needs

Review / Approve Memory Needs
Review / Approve Mech. Interfaces

Review / Approve Timing Needs
Provide Data Repository ID, etc.

Review / Approve Spec.
Review System Safety

Define Power Needs
Define Memory Needs

Define Mechanical Interfaces
Provide Initial Timing Needs

Request Data Availability
Provide Interface Specification(s)

Support Safety Review
DESIGN Provide Design Support

Update Configuration Data
Product Design

Provide Config. Data Needs
INTEGRATION -

Build / Compile / Integrate System
Perform Bench Testing
Configure Test System

Perform Regression Testing

Provide Hardware / Software Modules
Support Build / Compilation

Support Bench Test
-
-

SYSTEM TEST Review Test Descriptions
Support Test Proc. Development

Perform System Testing

Provide Test Descriptions
Test Procedure Development

Support System Testing
INSTALLATION Install New Technology Support Product Installation
FLIGHT TEST -

Support Flight Test
-

Provide Test Procedures
Monitor Flight Tests
Review Test Results

POST FLIGHT Reconfigure System Remove Hardware

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

102

9.3 Typical Systems Integration Scenarios

Examples of anticipated technology insertion activities are presented below. These examples illustrate the process by
which the Third-Party Technology Developer (3PTD) and the HUMS Systems Integrator (HUMS SI) coordinate the
insertion of new technology into the HUMS. Specific issues to be discussed between the 3PTDs and the HUMS SI
are outlined in Appendix D. As both the IMD HUMS and the products of the 3PTDs contain proprietary information.
Though the HUMS system (as demonstrated by this specification) provides a very crisp boundaries between core
HUMS functions and functions of 3PTDs, appropriate controls must be exercised amongst all parties during
technology insertion.

9.3.1 External Third-Party Box Communicating with MPU via ARINC 429

Scenario: A Technology Provider desires to have a separate box communicate with the HUMS over unused ARINC
429 transmitters / receivers. The box received various data from the HUMS and performs processing on the data.
The box transmits data back to the HUMS for display on a CDU and for logging to the DTU.

The HUMS SI is not directly involved in the electrical or mechanical installation / interface with of the new box.
Instead, the HUMS SI provides information to the 3PTD as to the availability of desired information from the Data
Repository. The 3PTD defines ARINC message content (labels, data types, bus speed, etc.) in an interface spec to
the HUMS SI. The HUMS SI reviews / approves the spec and uses this as a basis for modifying the configuration
database. The 3PTD details which of the transmitted labels need to be logged / displayed, logging rates, CDU
display definitions, and data repository needs. Again, the HUMS SI configures these elements in the configuration
database. Once the system is configured, the HUMS SI loads the configuration data into the MPU, and sets up the
test bench. The 3PTD provides the new box that is integrated with the MPU. After successful bench testing, the box
is installed on the test aircraft and flight test is performed. After test it is not necessary for the HUMS SI to have any
detailed knowledge about the technology within the 3PTD's box.

9.3.2 Third-Party Application in PPU

Scenario: A 3PTD wants to embed an application within the PPU to perform some function. It will make use of
information within the Data Repository, and in turn, place new data into the Data Repository for logging to the DTU.
The HUMS SI provides information to the 3PTD as to the availability of the required data. The 3PTD provides a
specification / description of the new data to be placed into the repository. The HUMS SI updates the Configuration
Database with the new information. The 3PTD develops their Client and Factory Class Packages. The HUMS SI
integrates / compiles the new classes into the HUMS Flight Program CSCI. At this point, the HUMS SI is responsible
for maintain appropriate configuration management of the developed product. The HUMS SI coordinates with the
3PTD to insure proper scheduling of the 3PTD tasks is accomplished. The HUMS SI performs initial timing / memory
analyses of the new Flight Program. The 3PTD also details data logging needs that the HUMS SI configures in the
Configuration Database. After successful testing within the Window NT development environment, the Flight program
is cross-compiled to the PowerPC target and loaded into the MPU with the updated Configuration Data. At this point
integration and testing proceed, ultimately leading to flight-testing.

If the 3PTD needs to completely hide the source code from the HUMS SI, they may use an identical development
system to generate both the Windows NT and PowerPC object files. These would then be linked into the Flight
Program as necessary.

9.3.3 Third-Party VME Board in MPU

Scenario: A 3PTD desires to insert a VME board into one of the spare slots within the MPU. This board would
operate semi-autonomously and provide I/O to/from the Data Repository in the PPU via the VME bus. The board
would acquire I/O externally via spare signals pins on the MPU ARINC 600 connector.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

103

The 3PTD would define its data needs (input and output) associated with the Data Repository. The HUMS SI would
configure the Configuration Database to add the additional data required by the 3PTD as well as extend the Data
Repository to map into the VME address space. The 3PTD will need to provide thermal and power requirements to
the HUMS SI to insure that the VME board will operate within the thermal and power constraints of the MPU. The
HUMS SI will coordinate with the 3PTD to insure that cabling to the ARINC connector is properly defined. As
necessary, the HUMS SI will modify the test equipment & cable harnesses to support the new I/O to the VME board.
The 3PTD will provide the board to the HUMS SI for engineering integration and test. The HUMS SI will work with the
3PTD to assess system safety issues associated with inserting the VME board into the MPU. The HUMS SI will
document hardware and software configuration management for the configured MPU. After installation of the
requisite aircraft modifications and the reconfigured MPU, the 3PTD and the HUMS SI will support flight test.

9.3.4 Third-Party Application Accessing Ground Station ADF(s)

Scenario: A 3PTD desires to access information collected on a DTU. The 3PTD will then use this information within a
Windows NT-based application that performs some post-flight data processing.

The 3PTD would initially request simulated data be logged to a DTU. The HUMS SI would work with the 3PTD to
generate representative data on a DTU. This data would then be converted to an ADF for use by the 3PTD for
software development. The HUMS SI would also provide the ADF DLLs for use by the 3PTD. Once actual flight data
is collected on the DTU, it is stripped from the DTU and ultimately made available from the HUMS GBS. Either the
ADF can be served / transferred to a non-GBS computer for processing, or accessed from the GBS computer. The
3PTD can then access the ADF(s) and use them in its processing. If the 3PTD desires to utilize the HUMS GBS,
then configuration management of the GBS software (including the 3PTD software) follows under the control of the
HUMS SI.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

104

10 Notes

10.1 Abbreviations & Acronyms
A/C Aircraft
ADF Activity Data File
BIT Built in Test
CDU Cockpit Display Unit
CRC Cyclic Redundancy Check - a data integrity method that provides a high degree of integrity

for data transmission
COM Common Object Model - Microsoft standard for providing API services to executables and

objects.
CSC Computer Software Component - A portion of a CSCI that performs a major function or a

group of related functions. A CSC is composed of one or more Units.
CSCI Computer Software Configuration Item - A separately releasable and controlled software

element (many times what would be considered a program). A CSCI is composed of one or
more CSCs

CSU Computer Software Unit - Also called a Unit, one or more CSUs make up a CSC
DLL Dynamic Link Library
DTU Data Transfer Unit - A PCMCIA card device used to read and write data for the transfer to or

from the HUMS onboard system to the HUMS Ground Station
ECO Engineering Change Order
EMI Electro Magnetic Interference
GBS Ground Based Software - the main Ground station application
GS Ground Station
HUMS Health and Usage Management System - The overall system consisting of the onboard

system, ground based system and associated interfaced systems.
HUMS
SI

HUMS Systems Integrator

IMDS Integrated Mechanical Diagnostics System
IRS Interface Requirements Specification
MPU Main Processor Unit - The onboard HUMS component that collects data, provides on board

analysis, controls onboard display functions and send data to the DTU for transfer to the
Ground Station

OBS Onboard System
ODBC Open Database Connectivity
PGS Portable Ground System
PPU Primary Procession Unit - The core processor in the MPU
PWB Printed Wiring Board
RDF Raw Data File
RITA Rotorcraft Industry Technology Association - A US competitiveness group whose principal

members are Boeing Philadelphia, Boeing Mesa, Sikorsky Aircraft, and Bell Helicopter
RTB Rotor Track and Balance also Rotor Trim and Balance
RTM Requirements Traceability Manager - A software tool
S/W Software
StP Software Through Pictures
TBS To Be Supplied
VME A Backplane Bus Standard.
VPU Vibration Processing Unit - A coprocessor in the MPU that perform vibration acquisition and

data reduction.
3PTD Third-Party Technology Developer

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

105

Appendix A MPU External Connector Signal Assignment

Figure A - 1 ARINC Connector & Pin Outs

ARINC CONNECTOR

JIA

15 X 10

[AnaA]

JIB

15 X 10

[VPU]

JIC

5 X 10

[Power]

JID

15 X 10

[AnaA,B]

JIE

15 X 10

[AnaA,PPU]

JIF

10 X 10

[PPU]

 A B C D E F G H J K
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 A B C D E F G H J K
1
2
3
4
5

 51 52

 A B C D E F G H J K
1
2
3
4
5
6
7
8
9
10

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

106

JIA A B C D E
1

USER DEFINED
SIGNAL DCMIDA_1+

USER DEFINED
SIGNAL DCMIDA_1-

USER DEFINED
SIGNAL_DCLOWA_
11+

USER DEFINED
SIGNAL_DCLOWA_
11-

USER DEFINED
SIGNAL_DCMIDA_9
+

2 USER DEFINED
SIGNAL_DCMIDA_1
2+

USER DEFINED
SIGNAL_DCMIDA_1
2-

USER DEFINED
SIGNAL_DCMIDA_2
+

USER DEFINED
SIGNAL_DCMIDA_2-

USER DEFINED
SIGNAL_DCLOWA_
8+

3 USER DEFINED
SIGNAL_DCLOWA_
5+

USER DEFINED
SIGNAL_DCLOWA_
5-

USER DEFINED
SIGNAL_DCLOWA_
1+

USER DEFINED
SIGNAL_DCLOWA_
1-

USER DEFINED
SIGNAL_DCLOWA_
13+

4 USER DEFINED
SIGNAL_DCLOWA_
10+

USER DEFINED
SIGNAL_DCLOWA_
10-

USER DEFINED
SIGNAL_DCMIDA_7
+

USER DEFINED
SIGNAL_DCMIDA_7-

USER DEFINED
SIGNAL_DCMIDA_4
+

5
USER DEFINED
SIGNAL_DCHIA_2+

USER DEFINED
SIGNAL_DCHIA_2-

USER DEFINED
SIGNAL_DCMIDA_6
+

USER DEFINED
SIGNAL_DCMIDA_6-

USER DEFINED
SIGNAL_DCMIDA_1
0+

6 USER DEFINED
SIGNAL_DCLOWA_
6+

USER DEFINED
SIGNAL_DCLOWA_
6-

USER DEFINED
SIGNAL_DCMIDA_1
4+

USER DEFINED
SIGNAL_DCMIDA_1
4-

USER DEFINED
SIGNAL_DCHIA_1+

7 CGND CGND CGND CGND CGND
8 USER DEFINED

SIGNAL_ACCoupA_
1c+

USER DEFINED
SIGNAL_ACCoupA_
1c-

USER DEFINED
SIGNAL_ACCoupA_
3c+

USER DEFINED
SIGNAL_ACCoupA_
3c-

USER DEFINED
SIGNAL_DisA_5

9 USER DEFINED
SIGNAL_ACCoupA_
1b+

USER DEFINED
SIGNAL_ACCoupA_
1b-

USER DEFINED
SIGNAL_ACCoupA_
3b+

USER DEFINED
SIGNAL_ACCoupA_
3b-

USER DEFINED
SIGNAL_DisA_46

10 USER DEFINED
SIGNAL_ACCoupA_
1a+

USER DEFINED
SIGNAL_ACCoupA_
1a-

USER DEFINED
SIGNAL_ACCoupA_
2c+

USER DEFINED
SIGNAL_ACCoupA_
2c-

USER DEFINED
SIGNAL_DisA_11

11 USER DEFINED
SIGNAL_ACCoupA_
2a+

USER DEFINED
SIGNAL_ACCoupA_
2a-

USER DEFINED
SIGNAL_ACCoupA_
4c+

USER DEFINED
SIGNAL_ACCoupA_
4c-

USER DEFINED
SIGNAL_DisA_6

12 USER DEFINED
SIGNAL_ACCoupA_
2d+

USER DEFINED
SIGNAL_ACCoupA_
2d-

USER DEFINED
SIGNAL_ACCoupA_
4b+

USER DEFINED
SIGNAL_ACCoupA_
4b-

USER DEFINED
SIGNAL_DisA_18

13 USER DEFINED
SIGNAL_ACCoupA_
1d+

USER DEFINED
SIGNAL_ACCoupA_
1d-

USER DEFINED
SIGNAL_ACCoupA_
4a+

USER DEFINED
SIGNAL_ACCoupA_
4a-

USER DEFINED
SIGNAL_DisA_17

14 USER DEFINED
SIGNAL_ACCoupA_
3a+

USER DEFINED
SIGNAL_ACCoupA_
3a-

USER DEFINED
SIGNAL_ACCoupA_
4d+

USER DEFINED
SIGNAL_ACCoupA_
4d-

USER DEFINED
SIGNAL_DisA_12

15 USER DEFINED
SIGNAL_ACCoupA_
3d+

USER DEFINED
SIGNAL_ACCoupA_
3d-

USER DEFINED
SIGNAL_ACCoupA_
2b+

USER DEFINED
SIGNAL_ACCoupA_
2b-

USER DEFINED
SIGNAL_DisA_35

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

107

JIA F G H J K
1

USER DEFINED
SIGNAL_DCMIDA_9-

USER DEFINED
SIGNAL_DCMIDA_5
+

USER DEFINED
SIGNAL_DCMIDA_5-

USER DEFINED
SIGNAL_DCMIDA_8
+

USER DEFINED
SIGNAL_DCMIDA_8-

2 USER DEFINED
SIGNAL_DCLOWA_
8-

USER DEFINED
SIGNAL_DCLOWA_
4+

USER DEFINED
SIGNAL_DCLOWA_
4-

USER DEFINED
SIGNAL_DCMIDA_1
3+

USER DEFINED
SIGNAL_DCMIDA_1
3-

3 USER DEFINED
SIGNAL_DCLOWA_
13-

USER DEFINED
SIGNAL_DCLOWA_
9+

USER DEFINED
SIGNAL_DCLOWA_
9-

USER DEFINED
SIGNAL_DCLOWA_
2+

USER DEFINED
SIGNAL_DCLOWA_
2-

4
USER DEFINED
SIGNAL_DCMIDA_4-

USER DEFINED
SIGNAL_DCLOWA_
14+

USER DEFINED
SIGNAL_DCLOWA_
14-

USER DEFINED
SIGNAL_DCLOWA_
7+

USER DEFINED
SIGNAL_DCLOWA_
7-

5 USER DEFINED
SIGNAL_DCMIDA_1
0-

USER DEFINED
SIGNAL_DCLOWA_
3+

USER DEFINED
SIGNAL_DCLOWA_
3-

USER DEFINED
SIGNAL_DCLOWA_
12+

USER DEFINED
SIGNAL_DCLOWA_
12-

6
USER DEFINED
SIGNAL_DCHIA_1-

USER DEFINED
SIGNAL_DCMIDA_1
1+

USER DEFINED
SIGNAL_DCMIDA_1
1-

USER DEFINED
SIGNAL_DCMIDA_3
+

USER DEFINED
SIGNAL_DCMIDA_3-

7 CGND CGND CGND CGND CGND
8 USER DEFINED

SIGNAL_DisA_30
USER DEFINED
SIGNAL_DisA_1

USER DEFINED
SIGNAL_DisA_25

USER DEFINED
SIGNAL_DisA_3

USER DEFINED
SIGNAL_DisA_27

9 USER DEFINED
SIGNAL_DisA_29

USER DEFINED
SIGNAL_DisA_8

USER DEFINED
SIGNAL_DisA_32

USER DEFINED
SIGNAL_DisA_10

USER DEFINED
SIGNAL_DisA_34

10 USER DEFINED
SIGNAL_DisA_36

USER DEFINED
SIGNAL_DisA_19

USER DEFINED
SIGNAL_DisA_43

USER DEFINED
SIGNAL_DisA_21

USER DEFINED
SIGNAL_DisA_45

11 USER DEFINED
SIGNAL_DisA_47

USER DEFINED
SIGNAL_DisA_14

USER DEFINED
SIGNAL_DisA_38

USER DEFINED
SIGNAL_DisA_16

USER DEFINED
SIGNAL_DiscA_40

12 USER DEFINED
SIGNAL_DisA_42

USER DEFINED
SIGNAL_DisA_13

USER DEFINED
SIGNAL_DisA_37

USER DEFINED
SIGNAL_DisA_15

USER DEFINED
SIGNAL_DisA_39

13 USER DEFINED
SIGNAL_DisA_41

USER DEFINED
SIGNAL_DisA_48

USER DEFINED
SIGNAL_DisA_20

USER DEFINED
SIGNAL_DisA_44

USER DEFINED
SIGNAL_DisA_22

14 USER DEFINED
SIGNAL_DisA_24

USER DEFINED
SIGNAL_DisA_31

USER DEFINED
SIGNAL_DisA_7

USER DEFINED
SIGNAL_DisA_33

USER DEFINED
SIGNAL_DisA_9

15 USER DEFINED
SIGNAL_DisA_23

USER DEFINED
SIGNAL_DisA_26

USER DEFINED
SIGNAL_DisA_4

USER DEFINED
SIGNAL_DisA_28

USER DEFINED
SIGNAL_DisA_2

Table A - 1 ARINC Connector J1A (15 x 10) [AnaA]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

108

JIB A B C D E

1 A_MR01_H A_MR01_L A_MR02_H A_MR02_L A_MR03_H
2 A_MR06_L A_MR06_H A_TR01_L A_TR01_H A_TR02_L
3 CGND CGND CGND CGND CGND
4 A_DT13_H A_DT13_L A_DT14_H A_DT14_L A_DT15_H
5 A_DT17_L A_DT17_H A_DT16_L A_DT16_H A_DT15_L
6 A_DT18_H A_DT18_L A_DT19_H A_DT19_L A_DT20_H
7 A_DT21_L A_DT21_H A_DT22_L A_DT22_H A_DT23_L
8 A_DT26_H A_DT26_L A_DT27_H A_DT27_L A_DT28_H
9 A_DT31_L A_DT31_H A_DT32_L A_DT32_H A_DT1_L
10 A_DT4_H A_DT4_L A_DT5_H A_DT5_L A_DT6_H
11 A_DT9_L A_DT9_H A_DT10_L A_DT10_H A_DT11_L
12 CGND CGND CGND CGND CGND
13

INDX_TRO_L INDX_TRO_H INDX_OPT_L
Frequency_10+,
[T_SPA1_H]

Frequency_07-,
[T_ENG3_L]

14
INDX_MRO_H INDX_MRO_L INDX_OPT_H

Frequency_10-,
[T_SPA1_L]

Frequency_06+,
[T_ENG2_H]

15
INDX_SH_L INDX_SH_H

Frequency_11-,
[T_SPA2_L]

Frequency_11+,
[T_SPA2_H]

Frequency_05-,
[T_ENG1_L]

JIB F G H J K
1 A_MR03_L A_MR04_H A_MR04_L A_MR05_L A_MR05_H
2 A_TR02_H CGND CGND CGND CGND
3 CGND Sensor GND A_ENG1A_H A_ENG1_L A_ENG1B_H
4 CGND A_ENG2A_H A_ENG2_L A_ENG2B_H Sensor GND
5 CGND Sensor GND A_ENG3A_H A_ENG3_L A_ENG3B_H
6 A_DT20_L CGND CGND CGND CGND
7 A_DT23_H A_DT24_L A_DT24_H A_DT25_L A_DT25_H
8 A_DT28_L A_DT29_H A_DT29_L A_DT30_H A_DT30_L
9 A_DT1_H A_DT2_L A_DT2_H A_DT3_L A_DT3_H
10 A_DT6_L A_DT7_H A_DT7_L A_DT8_H A_DT8_L
11 A_DT11_H A_DT12_L A_DT12_H CGND CGND
12 CGND CGND CGND MIC_L MIC_H
13 Frequency_07+,

[T_ENG3_H]
Frequency_09-,
[T_DT2_L]

Frequency_09+,
[T_DT2_H] CGND CGND

14 Frequency_06-,
[T_ENG2_L]

Frequency_08+,
[T_DT1_H] CGND OPT_TRK1_L OPT_TRK1_H

15 Frequency_05+,
[T_ENG1_H]

Frequency_08-
[T_DT1_L] CGND OPT_TRK2_H OPT_TRK2_L

Table A - 2 ARINC Connector J1B (15 x 10) [VPU]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

109

JIC A B C D E

1 JIC A B C D
2 1 T_SPA3_H T_SPA3_L CGND Not Used
3 2 USER DEFINED

SIGNAL_DISOUTB_
1+

USER DEFINED
SIGNAL_DISOUTB_
1-

 +28V_Out2 (1),
[+28V_RDC (1)]

 +28V_Out2_Rtn (1),
[+28V_RDC_Rtn
(1)]

4 3 USER DEFINED
SIGNAL_ENSHUB_1
+

USER DEFINED
SIGNAL_GENSHUB
_1-

USER DEFINED
SIGNAL_DISOUTB_2
+ DISOUTB_2-

5 4 USER DEFINED
SIGNAL_DCHIB_1+

USER DEFINED
SIGNAL_DCHIB_1-

USER DEFINED
SIGNAL_DCHIB_2+

USER DEFINED
SIGNAL_DCHIB_2-

 +28V_Power +28V_Power_Rtn

 51 52

JIC F G H J K

1 Not Used Not Used CGND +12V_Trk (1) +12V_Trk_Rtn (1)
2

 +28V_Out2_Rtn (2),
[+28V_RDC_Rtn (2)]

USER DEFINED
SIGNAL_DISOUTA_
4+

USER DEFINED
SIGNAL_DISOUTA_
4- Trk_Lit+ (1) Trk_Lit- (1)

3 USER DEFINED
SIGNAL_DISOUTA_
3-

USER DEFINED
SIGNAL_DISOUTA_
1+

USER DEFINED
SIGNAL_DISOUTA_
1-

 +28V_Out1,
[+28V_DTU]

 +28V_Out1_Rtn,
[+28V_DTU_Rtn]

4 USER DEFINED
SIGNAL_DISOUTB_
3- HUMS_Fail_Disc+ HUMS_Fail_Disc- Trk_Lit+ (2) Trk_Lit- (2)

5 USER DEFINED
SIGNAL_DISOUTA_
2- +12V_Trk (2) +12V_Trk_Rtn (2)

USER DEFINED
SIGNAL_DISOUTB_4
+

USER DEFINED
SIGNAL_DISOUTB_
4-

Table A - 3 ARINC Connector J1C (5 x 10) [Power Supply]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

110

JID A B C D E

1 USER DEFINED
SIGNAL_GENSHUA
_2+

USER DEFINED
SIGNAL_GENSHUA
_2-

USER DEFINED
SIGNAL_+10VExcA_
2+

USER DEFINED
SIGNAL_+10VExcA_
2-

USER DEFINED
SIGNAL_DCHIA_3+

2
USER DEFINED
SIGNAL_DCHIA_4+

USER DEFINED
SIGNAL_DCHIA_4-

USER DEFINED
SIGNAL_IOatPrbA_2
+

USER DEFINED
SIGNAL_IOatPrbA_2
-

USER DEFINED
SIGNAL_IDCExcA_3
+

3 USER DEFINED
SIGNAL_DCCoupA_
1d+

USER DEFINED
SIGNAL_DCCoupA_
1d-

USER DEFINED
SIGNAL_IDCExcA_4
+

USER DEFINED
SIGNAL_IDCExcA_4
-

USER DEFINED
SIGNAL_DCCoupA_
1a+

4 USER DEFINED
SIGNAL_+5VExcA_2
+

USER DEFINED
SIGNAL_+5VExcA_2
-

USER DEFINED
SIGNAL_HDLA+

USER DEFINED
SIGNAL_HDLA- CGND

5 USER DEFINED
SIGNAL_+5VExcA_1
+

USER DEFINED
SIGNAL_+5VExcA_1
-

USER DEFINED
SIGNAL_+10VExcA_
1+

USER DEFINED
SIGNAL_+10VExcA_
1- CGND

6 USER DEFINED
SIGNAL_IOatPrbA_1
+

USER DEFINED
SIGNAL_IOatPrbA_1
-

USER DEFINED
SIGNAL_IDCExcA_1
+

USER DEFINED
SIGNAL_IDCExcA_1
-

USER DEFINED
SIGNAL_ACExcA_1+

7 CGND CGND CGND CGND CGND
8 USER DEFINED

SIGNAL_ACCoupB_
1c+

USER DEFINED
SIGNAL_ACCoupB_
1c-

USER DEFINED
SIGNAL_ACCoupB_
2d+

USER DEFINED
SIGNAL_ACCoupB_
2d-

USER DEFINED
SIGNAL_DisB_26

9 USER DEFINED
SIGNAL_ACCoupB_
1b+

USER DEFINED
SIGNAL_ACCoupB_
1b-

USER DEFINED
SIGNAL_ACCoupB_
4a+

USER DEFINED
SIGNAL_ACCoupB_
4a-

USER DEFINED
SIGNAL_DisB_37

10 USER DEFINED
SIGNAL_ACCoupB_
1d+

USER DEFINED
SIGNAL_ACCoupB_
1d-

USER DEFINED
SIGNAL_ACCoupB_
3d+

USER DEFINED
SIGNAL_ACCoupB_
3d-

USER DEFINED
SIGNAL_DisB_44

11 USER DEFINED
SIGNAL_ACCoupB_
2c+

USER DEFINED
SIGNAL_ACCoupB_
2c-

USER DEFINED
SIGNAL_ACCoupB_
3c+

USER DEFINED
SIGNAL_ACCoupB_
3c-

USER DEFINED
SIGNAL_DisB_43

12 USER DEFINED
SIGNAL_ACCoupB_
2b+

USER DEFINED
SIGNAL_ACCoupB_
2b-

USER DEFINED
SIGNAL_ACCoupB_
4b+

USER DEFINED
SIGNAL_ACCoupB_
4b-

USER DEFINED
SIGNAL_DisB_38

13 USER DEFINED
SIGNAL_ACCoupB_
2a+

USER DEFINED
SIGNAL_ACCoupB_
2a-

USER DEFINED
SIGNAL_ACCoupB_
4d+

USER DEFINED
SIGNAL_ACCoupB_
4d-

USER DEFINED
SIGNAL_DisB_25

14 USER DEFINED
SIGNAL_ACCoupB_
1a+

USER DEFINED
SIGNAL_ACCoupB_
1a-

USER DEFINED
SIGNAL_ACCoupB_
4c+

USER DEFINED
SIGNAL_ACCoupB_
4c-

USER DEFINED
SIGNAL_DisB_10

15 USER DEFINED
SIGNAL_ACCoupB_
3a+

USER DEFINED
SIGNAL_ACCoupB_
3a-

USER DEFINED
SIGNAL_ACCoupB_
3b+

USER DEFINED
SIGNAL_ACCoupB_
3b-

USER DEFINED
SIGNAL_DisB_9

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

111

JID F G H J K

1
USER DEFINED
SIGNAL_DCHIA_3-

USER DEFINED
SIGNAL_GENSHUA
_1+

USER DEFINED
SIGNAL_GENSHUA
_1-

USER DEFINED
SIGNAL_DCCoupA_
1b+

USER DEFINED
SIGNAL_DCCoupA_
1b-

2 USER DEFINED
SIGNAL_IDCExcA_3
-

USER DEFINED
SIGNAL_IDCExcA_2
+

USER DEFINED
SIGNAL_IDCExcA_2
-

USER DEFINED
SIGNAL_DCCoupA_
1c+

USER DEFINED
SIGNAL_DCCoupA_
1c-

3 USER DEFINED
SIGNAL_DCCoupA_
1a-

USER DEFINED
SIGNAL_Bit +28V
Reg

USER DEFINED
SIGNAL_Bit +28V
Reg Rtn CGND CGND

4

CGND

USER DEFINED
SIGNAL_ACExcA_2
+

USER DEFINED
SIGNAL_ACExcA_2-

USER DEFINED
SIGNAL_FreqA_2+

USER DEFINED
SIGNAL_FreqA_2-

5
CGND

USER DEFINED
SIGNAL_FreqA_3+

USER DEFINED
SIGNAL_FreqA_3-

USER DEFINED
SIGNAL_FreqA_5+

USER DEFINED
SIGNAL_FreqA_5-

6 USER DEFINED
SIGNAL_ACExcA_1-

USER DEFINED
SIGNAL_FreqA_1+

USER DEFINED
SIGNAL_FreqA_1-

USER DEFINED
SIGNAL_FreqA_4+

USER DEFINED
SIGNAL_FreqA_4-

7 CGND CGND CGND CGND CGND
8 USER DEFINED

SIGNAL_DisB_4
USER DEFINED
SIGNAL_DisB_28

USER DEFINED
SIGNAL_DisB_6

USER DEFINED
SIGNAL_DisB_30

USER DEFINED
SIGNAL_DisB_2

9 USER DEFINED
SIGNAL_DiscB_15

USER DEFINED
SIGNAL_DisB_27

USER DEFINED
SIGNAL_DisB_17

USER DEFINED
SIGNAL_DisB_41

USER DEFINED
SIGNAL_DisB_13

10 USER DEFINED
SIGNAL_DisB_22

USER DEFINED
SIGNAL_DisB_34

USER DEFINED
SIGNAL_DisB_24

USER DEFINED
SIGNAL_DisB_48

USER DEFINED
SIGNAL_DisB_20

11 USER DEFINED
SIGNAL_DisB_21

USER DEFINED
SIGNAL_DisB_31

USER DEFINED
SIGNAL_DisB_23

USER DEFINED
SIGNAL_DisB_47

USER DEFINED
SIGNAL_DisB_19

12 USER DEFINED
SIGNAL_DisB_16

USER DEFINED
SIGNAL_DisB_40

USER DEFINED
SIGNAL_DisB_18

USER DEFINED
SIGNAL_DisB_42

USER DEFINED
SIGNAL_DisB_14

13 USER DEFINED
SIGNAL_DisB_3

USER DEFINED
SIGNAL_DisB_39

USER DEFINED
SIGNAL_DisB_5

USER DEFINED
SIGNAL_DisB_29

USER DEFINED
SIGNAL_DisB_1

14 USER DEFINED
SIGNAL_DisB_32

USER DEFINED
SIGNAL_DisB_12

USER DEFINED
SIGNAL_DisB_46

USER DEFINED
SIGNAL_DisB_8

USER DEFINED
SIGNAL_DisB_36

15 USER DEFINED
SIGNAL_DisB_33

USER DEFINED
SIGNAL_DisB_11

USER DEFINED
SIGNAL_DisB_35

USER DEFINED
SIGNAL_DisB_7

USER DEFINED
SIGNAL_DisB_45

Table A - 4 ARINC Connector J1D (15 x 10) [AnaA,B]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

112

JIE A B C D E

1 USER DEFINED
SIGNAL_IDCExcB_2
+

USER DEFINED
SIGNAL_IDCExcB_2
-

USER DEFINED
SIGNAL_DCMIDB_2
+

USER DEFINED
SIGNAL_DCMIDB_2-

USER DEFINED
SIGNAL_+10VExcB_
1+

2 USER DEFINED
SIGNAL_DCLOWB_
10+

USER DEFINED
SIGNAL_DCLOWB_
10-

USER DEFINED
SIGNAL_IOAtPrbB_1
+

USER DEFINED
SIGNAL_IOAtPrbB_1
-

USER DEFINED
SIGNAL_DCLOWB_
11+

3 USER DEFINED
SIGNAL_DCLOWB_
9+

USER DEFINED
SIGNAL_DCLOWB_
9-

USER DEFINED
SIGNAL_DCMIDB_1
2+

USER DEFINED
SIGNAL_DCMIDB_1
2-

USER DEFINED
SIGNAL_IOAtPrbB_2
+

4 USER DEFINED
SIGNAL_DCLOWB_
4+

USER DEFINED
SIGNAL_DCLOWB_
4-

USER DEFINED
SIGNAL_DCMIDB_7
+

USER DEFINED
SIGNAL_DCMIDB_7-

USER DEFINED
SIGNAL_DCMIDB_1
3+

5 USER DEFINED
SIGNAL_DCLOWB_
14+

USER DEFINED
SIGNAL_DCLOWB_
14-

USER DEFINED
SIGNAL_DCCoupB_
1b+

USER DEFINED
SIGNAL_DCCoupB_
1b-

USER DEFINED
SIGNAL_+5VExcB_2
+

6
USER DEFINED
SIGNAL_DCHIB_3+

USER DEFINED
SIGNAL_DCHIB_3-

USER DEFINED
SIGNAL_DCCoupB_
1a+

USER DEFINED
SIGNAL_DCCoupB_
1a-

USER DEFINED
SIGNAL_DCLOWB_
3+

7 USER DEFINED
SIGNAL_DCMIDB_1
0+

USER DEFINED
SIGNAL_DCMIDB_1
0-

USER DEFINED
SIGNAL_+5VExcB_1
+

USER DEFINED
SIGNAL_+5VExcB_1
-

USER DEFINED
SIGNAL_DCCoupB_
1d+

8 USER DEFINED
SIGNAL_DCMIDB_5
+

USER DEFINED
SIGNAL_DCMIDB_5-

USER DEFINED
SIGNAL_DCLOWB_
2+

USER DEFINED
SIGNAL_DCLOWB_
2- DGND [6]

9
USER DEFINED
SIGNAL_HDLB+

USER DEFINED
SIGNAL_HDLB-

USER DEFINED
SIGNAL_DCMIDB_3
+

USER DEFINED
SIGNAL_DCMIDB_3- Bit -15VA

10 USER DEFINED
SIGNAL_DCLOWB_
5+

USER DEFINED
SIGNAL_DCLOWB_
5-

USER DEFINED
SIGNAL_DCLOWB_
12+

USER DEFINED
SIGNAL_DCLOWB_
12- Bit +15VA

11 USER DEFINED
SIGNAL_DCLOWB_
1+

USER DEFINED
SIGNAL_DCLOWB_
1-

USER DEFINED
SIGNAL_DCLOWB_
7+

USER DEFINED
SIGNAL_DCLOWB_
7- BIT+12V

12 Bit +2.9VB BIT+5V Bit +3.3V Bit +2.5V Bit-12V
13 1553 RT0 1553 RT5 1553 RT4 1553 RT1 1553 RT3
14 DISCRETE (12) DISCRETE (0) DISCRETE (2) DISCRETE (8) DISCRETE (4)
15

DISCRETE (1) DISCRETE (3) DISCRETE (11) DGND [6]
USER DEFINED
SIGNAL_FreqB_3+

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

113

JIE F G H J K
1 USER DEFINED

SIGNAL_+10VExcB_
1-

USER DEFINED
SIGNAL_DCCoupB_
1c+

USER DEFINED
SIGNAL_DCCoupB_
1c-

USER DEFINED
SIGNAL_DCLOWB_
6+

USER DEFINED
SIGNAL_DCLOWB_
6-

2 USER DEFINED
SIGNAL_DCLOWB_
11-

USER DEFINED
SIGNAL_DCMIDB_8
+

USER DEFINED
SIGNAL_DCMIDB_8-

USER DEFINED
SIGNAL_IDCExcB_3
+

USER DEFINED
SIGNAL_IDCExcB_3
-

3 USER DEFINED
SIGNAL_IOAtPrbB_2
-

USER DEFINED
SIGNAL_DCMIDB_9
+

USER DEFINED
SIGNAL_DCMIDB_9-

USER DEFINED
SIGNAL_DCMIDB_1
+

USER DEFINED
SIGNAL_DCMIDB_1-

4 USER DEFINED
SIGNAL_DCMIDB_1
3-

USER DEFINED
SIGNAL_DCMIDB_4
+

USER DEFINED
SIGNAL_DCMIDB_4-

USER DEFINED
SIGNAL_DCHIB_4+

USER DEFINED
SIGNAL_DCHIB_4-

5 USER DEFINED
SIGNAL_+5VExcB_2
-

USER DEFINED
SIGNAL_DCLOWB_
13+

USER DEFINED
SIGNAL_DCLOWB_
13-

USER DEFINED
SIGNAL_DCMIDB_1
1+

USER DEFINED
SIGNAL_DCMIDB_1
1-

6 USER DEFINED
SIGNAL_DCLOWB_
3-

USER DEFINED
SIGNAL_DCMIDB_1
4+

USER DEFINED
SIGNAL_DCMIDB_1
4-

USER DEFINED
SIGNAL_DCMIDB_6
+

USER DEFINED
SIGNAL_DCMIDB_6-

7 USER DEFINED
SIGNAL_DCCoupB_
1d-

USER DEFINED
SIGNAL_DCLOWB_
8+

USER DEFINED
SIGNAL_DCLOWB_
8-

USER DEFINED
SIGNAL_IDCExcB_1
+

USER DEFINED
SIGNAL_IDCExcB_1
-

8

Bit Battery+

USER DEFINED
SIGNAL_+10VExcB_
2+

USER DEFINED
SIGNAL_+10VExcB_
2-

USER DEFINED
SIGNAL_IDCExcB_4
+

USER DEFINED
SIGNAL_IDCExcB_4
-

9 Bit Vbat AGND [T, 6] Bit -15VB Bit Sensor GND Bit +28V VPU
10

Bit Battery-
USER DEFINED
SIGNAL_FreqB_1+

USER DEFINED
SIGNAL_FreqB_1-

USER DEFINED
SIGNAL_FreqB_4+

USER DEFINED
SIGNAL_FreqB_4-

11
Bit +2.9VA Frequency_04+ Frequency_04-

USER DEFINED
SIGNAL_FreqB_2+

USER DEFINED
SIGNAL_FreqB_2-

12
Bit +15VB

USER DEFINED
SIGNAL_ACExcB_2+

USER DEFINED
SIGNAL_ACExcB_2-

USER DEFINED
SIGNAL_FreqB_5+

USER DEFINED
SIGNAL_FreqB_5-

13
1553 RT2 DISCRETE (14) DISCRETE (9)

USER DEFINED
SIGNAL_ACExcB_1+

USER DEFINED
SIGNAL_ACExcB_1-

14 DISCRETE (10) DISCRETE (13) DISCRETE (6) DISCRETE (5) DISCRETE (7)
15 USER DEFINED

SIGNAL_FreqB_3- A717_Tx+2 A717_Tx-2 A717_Tx+1 A717_Tx-1

Table A - 5 ARINC Connector J1E (15 x 10) [AnaA,PPU]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

114

JIF A B C D E

1 Frequency_00+ Frequency_00- Frequency_03+ Frequency_03- +A429_TX00
2 Frequency_02+ Frequency_02- Frequency_01+ Frequency_01- 422_TX+3
3 +A429_TX03 -A429_TX03 +A429_RX03 -A429_RX03 422_RX+5\485+1
4 422_TX+5 422_TX-5 422_TX+6 422_TX-6 +A429_RX04
5 422_RX+1 422_RX-1\232_Rx1 422_RX+6\485+2 422_RX-6\485-2 +A429_TX01
6 +A429_RX13 -A429_RX13 +A429_RX09 -A429_RX09 422_TX+4
7 +A429_RX08 -A429_RX08 422_CTS_+3 422_CTS_-3 422_RTS_+3
8 +A429_RX12 -A429_RX12 422_RX+2 422_RX-2/232_Rx2 422_RX+3
9 CGND CGND CGND CGND CGND
10 1553A(Bus B)+ 1553A(Bus B)- 1553BTCP(Bus B)+ 1553BTCP(Bus B)- 1553A(Bus A)+

JIF F G H J K
1 -A429_TX00 422_RX+7\485+3 422_RX-7\485-3 422_TX+7 422_TX-7
2 422_TX-3\232_Tx3 +A429_RX00 -A429_RX00 422_RX+4\485+0 422_RX-4\485-0
3 422_RX-5\485-1 +A429_RX10 -A429_RX10 422_TX+1 422_TX-1\232_Tx1
4 -A429_RX04 +A429_RX02 -A429_RX02 +A429_RX07 -A429_RX07
5 -A429_TX01 +A429_RX11 -A429_RX11 +A429_TX02 -A429_TX02
6 422_TX-4 +A429_RX06 -A429_RX06 +A429_RX01 -A429_RX01
7 422_RTS_-3 +A429_RX05 -A429_RX05 422_TX+2 422_TX-2/232_Tx2
8 422_RX-3/232_Rx3 CGND CGND CGND CGND
9 CGND CGND CGND 1553BTCP(Bus A)+ 1553BTCP(Bus A)-
10 1553A(Bus A)- 1553BDCP(Bus B)+ 1553BDCP(Bus B)- 1553BDCP(Bus A)+ 1553BDCP(Bus A)-

Table A - 6 ARINC Connector J1F (10 x 10) [PPU]

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

115

Appendix B Spare Board Signal Assignment & Geometry

Figure B - 1 MPU Backplane Block Diagram

Power Supply Hold-Up Assembly

JA2

JA0

JA1

JB2

JB0

JB1

JP2

JP0

JP1 JV1

JV2

ARINC 600 Connector

VPU Board PPU Board

Analog Spare Board A
JA1, JA0, JA2 Analog Spare Board B

JB1, JB0, JB2

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

116

JA1
PIN ROW A ROW B ROW C

1 D00 BBSY* D08
2 D01 BCLR* D09
3 D02 ACFAIL* D10
4 D03 BG0IN* D11
5 D04 BG0OUT* D12
6 D05 BG1IN* D13
7 D06 BG1OUT* D14
8 D07 BG2IN* D15

9 DGND BG2OUT* DGND

10 SYSCLK BG3IN* SYSFAIL*
11 DGND BG3OUT* BERR*
12 DS1* BR0* SYSRESET*
13 DS0* BR1* LWORD*
14 WRITE* BR2* AM5
15 DGND BR3* A23
16 DTACK* AM0 A22

17 DGND AM1 A21
18 AS* AM2 A20
19 DGND AM3 A19
20 IACK* DGND A18
21 IACKIN* SERCLK A17
22 IACKOUT* SERDAT* A16
23 AM4 DGND A15
24 A07 IRQ7* A14

25 A06 IRQ6* A13
26 A05 IRQ5* A12
27 A04 IRQ4* A11
28 A03 IRQ3* A10
29 A02 IRQ2* A09
30 A01 IRQ1* A08
31 -12V NC (DGnd) +12V
32 +5V +5V +5V

Table B - 1 Spare Board A, JA1 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

117

JA0
PIN ROW A ROW B ROW C ROW D ROW E

1
USER DEFINED
SIGNAL_ACCoupA_
1a+

USER DEFINED
SIGNAL_ACCoupA_
1a- AGND

USER DEFINED
SIGNAL_DisA_22

USER DEFINED
SIGNAL_DisA_41

2
USER DEFINED
SIGNAL_ACCoupA_
1b+

USER DEFINED
SIGNAL_ACCoupA_
1b-

USER DEFINED
SIGNAL_DisA_7

USER DEFINED
SIGNAL_DisA_23

USER DEFINED
SIGNAL_DisA_42

3
USER DEFINED
SIGNAL_ACCoupA_
1c+

USER DEFINED
SIGNAL_ACCoupA_
1c-

USER DEFINED
SIGNAL_DisA_8

USER DEFINED
SIGNAL_DisA_24

USER DEFINED
SIGNAL_DisA_43

4
USER DEFINED
SIGNAL_ACCoupA_
1d+

USER DEFINED
SIGNAL_ACCoupA_
1d-

USER DEFINED
SIGNAL_DisA_9

USER DEFINED
SIGNAL_DisA_25

USER DEFINED
SIGNAL_DisA_44

5
USER DEFINED
SIGNAL_ACCoupA_
2a+

USER DEFINED
SIGNAL_ACCoupA_
2a-

USER DEFINED
SIGNAL_DisA_10

USER DEFINED
SIGNAL_DisA_26

USER DEFINED
SIGNAL_DisA_45

6
USER DEFINED
SIGNAL_ACCoupA_
2b+

USER DEFINED
SIGNAL_ACCoupA_
2b-

USER DEFINED
SIGNAL_DisA_11

USER DEFINED
SIGNAL_DisA_27

USER DEFINED
SIGNAL_DisA_46

7
USER DEFINED
SIGNAL_ACCoupA_
2c+

USER DEFINED
SIGNAL_ACCoupA_
2c-

USER DEFINED
SIGNAL_DisA_12

USER DEFINED
SIGNAL_DisA_28

USER DEFINED
SIGNAL_DisA_47

8
USER DEFINED
SIGNAL_ACCoupA_
2d+

USER DEFINED
SIGNAL_ACCoupA_
2d-

USER DEFINED
SIGNAL_DisA_13

USER DEFINED
SIGNAL_DisA_29

USER DEFINED
SIGNAL_DisA_48

9
USER DEFINED
SIGNAL_ACCoupA_
3a+

USER DEFINED
SIGNAL_ACCoupA_
3a-

USER DEFINED
SIGNAL_DisA_14

USER DEFINED
SIGNAL_DisA_30

USER DEFINED
SIGNAL_FreqA_1+

10
USER DEFINED
SIGNAL_ACCoupA_
3b+

USER DEFINED
SIGNAL_ACCoupA_
3b-

USER DEFINED
SIGNAL_DisA_15

USER DEFINED
SIGNAL_DisA_31

USER DEFINED
SIGNAL_FreqA_1-

11
USER DEFINED
SIGNAL_ACCoupA_
3c+

USER DEFINED
SIGNAL_ACCoupA_
3c-

USER DEFINED
SIGNAL_DisA_16

USER DEFINED
SIGNAL_DisA_32

USER DEFINED
SIGNAL_FreqA_2+

12
USER DEFINED
SIGNAL_ACCoupA_
3d+

USER DEFINED
SIGNAL_ACCoupA_
3d-

USER DEFINED
SIGNAL_DisA_17

USER DEFINED
SIGNAL_DisA_33

USER DEFINED
SIGNAL_FreqA_2-

13
USER DEFINED
SIGNAL_ACCoupA_
4a+

USER DEFINED
SIGNAL_ACCoupA_
4a-

USER DEFINED
SIGNAL_DisA_18

USER DEFINED
SIGNAL_DisA_34

USER DEFINED
SIGNAL_FreqA_3+

14
USER DEFINED
SIGNAL_ACCoupA_
4b+

USER DEFINED
SIGNAL_ACCoupA_
4b-

USER DEFINED
SIGNAL_DisA_19

USER DEFINED
SIGNAL_DisA_35

USER DEFINED
SIGNAL_FreqA_3-

15
USER DEFINED
SIGNAL_ACCoupA_
4c+

USER DEFINED
SIGNAL_ACCoupA_
4c-

USER DEFINED
SIGNAL_DisA_20

USER DEFINED
SIGNAL_DisA_36

USER DEFINED
SIGNAL_FreqA_4+

16
USER DEFINED
SIGNAL_ACCoupA_
4d+

USER DEFINED
SIGNAL_ACCoupA_
4d-

USER DEFINED
SIGNAL_DisA_21

USER DEFINED
SIGNAL_DisA_37

USER DEFINED
SIGNAL_FreqA_4-

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

118

17 USER DEFINED
SIGNAL_DisA_1

USER DEFINED
SIGNAL_DisA_4 +28V Reg

USER DEFINED
SIGNAL_DisA_38

USER DEFINED
SIGNAL_FreqA_5+

18 USER DEFINED
SIGNAL_DisA_2

USER DEFINED
SIGNAL_DisA_5 +28V Reg Rtn

USER DEFINED
SIGNAL_DisA_39

USER DEFINED
SIGNAL_FreqA_5-

19 USER DEFINED
SIGNAL_DisA_3

USER DEFINED
SIGNAL_DisA_6 AGND

USER DEFINED
SIGNAL_DisA_40

USER DEFINED
SIGNAL_A/B
Discrete

Table B - 2 Spare Board A, JA0 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

119

JA2
PIN ROW Z ROW A ROW B ROW C ROW D

1
USER DEFINED
SIGNAL_DCLOW
A_1+

USER DEFINED
SIGNAL_DCLOW
A_1- +5V Low Hold Up AGND

2
USER DEFINED
SIGNAL_DCLOW
A_2+

USER DEFINED
SIGNAL_DCLOW
A_2- DGND

USER DEFINED
SIGNAL_IOatPrA_1+

USER DEFINED
SIGNAL_IOatPrA_1-

3
USER DEFINED
SIGNAL_DCLOW
A_3+

USER DEFINED
SIGNAL_DCLOW
A_3- RESERVED

USER DEFINED
SIGNAL_IOtPrbA_2+

USER DEFINED
SIGNAL_IOtPrbA_2-

4
USER DEFINED
SIGNAL_DCLOW
A_4+

USER DEFINED
SIGNAL_DCLOW
A_4- A24

USER DEFINED
SIGNAL_IDCExcA_1+

USER DEFINED
SIGNAL_IDCExcA_1-

5
USER DEFINED
SIGNAL_DCLOW
A_5+

USER DEFINED
SIGNAL_DCLOW
A_5- A25

USER DEFINED
SIGNAL_IDCExcA_2+

USER DEFINED
SIGNAL_IDCExcA_2-

6
USER DEFINED
SIGNAL_DCLOW
A_6+

USER DEFINED
SIGNAL_DCLOW
A_6- A26

USER DEFINED
SIGNAL_IDCExcA_3+

USER DEFINED
SIGNAL_IDCExcA_3-

7
USER DEFINED
SIGNAL_DCLOW
A_7+

USER DEFINED
SIGNAL_DCLOW
A_7- A27

USER DEFINED
SIGNAL_IDCExcA_4+

USER DEFINED
SIGNAL_IDCExcA_4-

8
USER DEFINED
SIGNAL_DCLOW
A_8+

USER DEFINED
SIGNAL_DCLOW
A_8- A28 Vbat CJTA+

9
USER DEFINED
SIGNAL_DCLOW
A_9+

USER DEFINED
SIGNAL_DCLOW
A_9- A29

USER DEFINED
SIGNAL_DCCoupA_1a+ +15VA

10
USER DEFINED
SIGNAL_DCLOW
A_10+

USER DEFINED
SIGNAL_DCLOW
A_10- A30

USER DEFINED
SIGNAL_DCCoupA_1a- -15VA

11
USER DEFINED
SIGNAL_DCLOW
A_11+

USER DEFINED
SIGNAL_DCLOW
A_11- A31

USER DEFINED
SIGNAL_DCCoupA_1b+

USER DEFINED
SIGNAL_DCCoupA_1b-

12
USER DEFINED
SIGNAL_DCLOW
A_12+

USER DEFINED
SIGNAL_DCLOW
A_12- DGND

USER DEFINED
SIGNAL_DCCoupA_1c+

USER DEFINED
SIGNAL_DCCoupA_1c-

13
USER DEFINED
SIGNAL_DCLOW
A_13+

USER DEFINED
SIGNAL_DCLOW
A_13- +5V

USER DEFINED
SIGNAL_DCCoupA_1d+

USER DEFINED
SIGNAL_DCCoupA_1d-

14
USER DEFINED
SIGNAL_DCLOW
A_14+

USER DEFINED
SIGNAL_DCLOW
A_14- D16

USER DEFINED
SIGNAL_GENSHUA_1+

USER DEFINED
SIGNAL_GENSHUA_1-

15
USER DEFINED
SIGNAL_DCMIDA
_1+

USER DEFINED
SIGNAL_DCMIDA
_1- D17

USER DEFINED
SIGNAL_GENSHUA_2+

USER DEFINED
SIGNAL_GENSHUA_2-

16
USER DEFINED
SIGNAL_DCMIDA
_2+

USER DEFINED
SIGNAL_DCMIDA
_2- D18

USER DEFINED
SIGNAL_HDLA+

USER DEFINED
SIGNAL_HDLA-

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

120

17
USER DEFINED
SIGNAL_DCMIDA
_3+

USER DEFINED
SIGNAL_DCMIDA
_3- D19

USER DEFINED
SIGNAL_DISOUTA_1+

USER DEFINED
SIGNAL_DISOUTA_1-

18
USER DEFINED
SIGNAL_DCMIDA
_4+

USER DEFINED
SIGNAL_DCMIDA
_4- D20

USER DEFINED
SIGNAL_DISOUTA_2+

USER DEFINED
SIGNAL_DISOUTA_2-

19
USER DEFINED
SIGNAL_DCMIDA
_5+

USER DEFINED
SIGNAL_DCMIDA
_5- D21

USER DEFINED
SIGNAL_DISOUTA_3+

USER DEFINED
SIGNAL_DISOUTA_3-

20
USER DEFINED
SIGNAL_DCMIDA
_6+

USER DEFINED
SIGNAL_DCMIDA
_6- D22

USER DEFINED
SIGNAL_DISOUTA_4+

USER DEFINED
SIGNAL_DISOUTA_4-

21
USER DEFINED
SIGNAL_DCMIDA
_7+

USER DEFINED
SIGNAL_DCMIDA
_7- D23

USER DEFINED
SIGNAL_ACExcA_1+

USER DEFINED
SIGNAL_ACExcA_1-

22
USER DEFINED
SIGNAL_DCMIDA
_8+

USER DEFINED
SIGNAL_DCMIDA
_8- DGND

+A429_TX00
(RESERVED)

USER DEFINED
SIGNAL_ACExcA_2+

23
USER DEFINED
SIGNAL_DCMIDA
_9+

USER DEFINED
SIGNAL_DCMIDA
_9- D24

-A429_TX00
(RESERVED)

USER DEFINED
SIGNAL_ACExcA_2-

24
USER DEFINED
SIGNAL_DCMIDA
_10+

USER DEFINED
SIGNAL_DCMIDA
_10- D25

+A429_RX00
(RESERVED)

USER DEFINED
SIGNAL_+5VExcA_1+

25
USER DEFINED
SIGNAL_DCMIDA
_11+

USER DEFINED
SIGNAL_DCMIDA
_11- D26

-A429_RX00
(RESERVED)

USER DEFINED
SIGNAL_+5VExcA_1-

26
USER DEFINED
SIGNAL_DCMIDA
_12+

USER DEFINED
SIGNAL_DCMIDA
_12- D27

422A_TX+0
(RESERVED)

USER DEFINED
SIGNAL_+5VExcA_2+

27
USER DEFINED
SIGNAL_DCMIDA
_13+

USER DEFINED
SIGNAL_DCMIDA
_13- D28

422A_TX-0\232A_Tx0
(RESERVED)

USER DEFINED
SIGNAL_+5VExcA_2-

28
USER DEFINED
SIGNAL_DCMIDA
_14+

USER DEFINED
SIGNAL_DCMIDA
_14- D29

422_RX+0
(RESERVED)

USER DEFINED
SIGNAL_+10VExcA_1+

29
USER DEFINED
SIGNAL_DCHIA_
1+

USER DEFINED
SIGNAL_DCHIA_
1- D30

422_RX-0\232_Rx0
(RESERVED)

USER DEFINED
SIGNAL_+10VExcA_1-

30
USER DEFINED
SIGNAL_DCHIA_
2+

USER DEFINED
SIGNAL_DCHIA_
2- D31 Serial Format

USER DEFINED
SIGNAL_+10VExcA_2+

31
USER DEFINED
SIGNAL_DCHIA_
3+

USER DEFINED
SIGNAL_DCHIA_
3- DGND Analog A Reprogram

USER DEFINED
SIGNAL_+10VExcA_2-

32
USER DEFINED
SIGNAL_DCHIA_
4+

USER DEFINED
SIGNAL_DCHIA_
4- +5V

USER DEFINED
SIGNAL_SpareA Reset AGND

Table B - 3 Spare Board A, JA2 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

121

JB1
PIN ROW A ROW B ROW C

1 D00 BBSY* D08
2 D01 BCLR* D09
3 D02 ACFAIL* D10
4 D03 BG0IN* D11
5 D04 BG0OUT* D12
6 D05 BG1IN* D13
7 D06 BG1OUT* D14
8 D07 BG2IN* D15

9 DGND BG2OUT* DGND

10 SYSCLK BG3IN* SYSFAIL*
11 DGND BG3OUT* BERR*
12 DS1* BR0* SYSRESET*
13 DS0* BR1* LWORD*
14 WRITE* BR2* AM5
15 DGND BR3* A23
16 DTACK* AM0 A22

17 DGND AM1 A21
18 AS* AM2 A20
19 DGND AM3 A19
20 IACK* DGND A18
21 IACKIN* SERCLK A17
22 IACKOUT* SERDAT* A16
23 AM4 DGND A15
24 A07 IRQ7* A14

25 A06 IRQ6* A13
26 A05 IRQ5* A12
27 A04 IRQ4* A11
28 A03 IRQ3* A10
29 A02 IRQ2* A09
30 A01 IRQ1* A08
31 -12V NC (+5V) +12V
32 +5V +5V +5V

Table B - 4 Spare Board B, JB1 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

122

JB0
PIN ROW A ROW B ROW C ROW D ROW E

1
USER DEFINED
SIGNAL_ACCoupB_1
a+

USER DEFINED
SIGNAL_ACCoupB_1
a- AGND

USER DEFINED
SIGNAL_DisB_22

USER DEFINED
SIGNAL_DisB_41

2
USER DEFINED
SIGNAL_ACCoupB_1
b+

USER DEFINED
SIGNAL_ACCoupB_1
b-

USER DEFINED
SIGNAL_DisB_7

USER DEFINED
SIGNAL_DisB_23

USER DEFINED
SIGNAL_DisB_42

3
USER DEFINED
SIGNAL_ACCoupB_1
c+

USER DEFINED
SIGNAL_ACCoupB_1
c-

USER DEFINED
SIGNAL_DisB_8

USER DEFINED
SIGNAL_DisB_24

USER DEFINED
SIGNAL_DisB_43

4
USER DEFINED
SIGNAL_ACCoupB_1
d+

USER DEFINED
SIGNAL_ACCoupB_1
d-

USER DEFINED
SIGNAL_DisB_9

USER DEFINED
SIGNAL_DisB_25

USER DEFINED
SIGNAL_DisB_44

5
USER DEFINED
SIGNAL_ACCoupB_2
a+

USER DEFINED
SIGNAL_ACCoupB_2
a-

USER DEFINED
SIGNAL_DisB_10

USER DEFINED
SIGNAL_DisB_26

USER DEFINED
SIGNAL_DisB_45

6
USER DEFINED
SIGNAL_ACCoupB_2
b+

USER DEFINED
SIGNAL_ACCoupB_2
b-

USER DEFINED
SIGNAL_DisB_11

USER DEFINED
SIGNAL_DisB_27

USER DEFINED
SIGNAL_DisB_46

7
USER DEFINED
SIGNAL_ACCoupB_2
c+

USER DEFINED
SIGNAL_ACCoupB_2
c-

USER DEFINED
SIGNAL_DisB_12

USER DEFINED
SIGNAL_DisB_28

USER DEFINED
SIGNAL_DisB_47

8
USER DEFINED
SIGNAL_ACCoupB_2
d+

USER DEFINED
SIGNAL_ACCoupB_2
d-

USER DEFINED
SIGNAL_DisB_13

USER DEFINED
SIGNAL_DisB_29

USER DEFINED
SIGNAL_DisB_48

9
USER DEFINED
SIGNAL_ACCoupB_3
a+

USER DEFINED
SIGNAL_ACCoupB_3
a-

USER DEFINED
SIGNAL_DisB_14

USER DEFINED
SIGNAL_DisB_30

USER DEFINED
SIGNAL_FreqB_1+

10
USER DEFINED
SIGNAL_ACCoupB_3
b+

USER DEFINED
SIGNAL_ACCoupB_3
b-

USER DEFINED
SIGNAL_DisB_15

USER DEFINED
SIGNAL_DisB_31

USER DEFINED
SIGNAL_FreqB_1-

11
USER DEFINED
SIGNAL_ACCoupB_3
c+

USER DEFINED
SIGNAL_ACCoupB_3
c-

USER DEFINED
SIGNAL_DisB_16

USER DEFINED
SIGNAL_DisB_32

USER DEFINED
SIGNAL_FreqB_2+

12
USER DEFINED
SIGNAL_ACCoupB_3
d+

USER DEFINED
SIGNAL_ACCoupB_3
d-

USER DEFINED
SIGNAL_DisB_17

USER DEFINED
SIGNAL_DisB_33

USER DEFINED
SIGNAL_FreqB_2-

13
USER DEFINED
SIGNAL_ACCoupB_4
a+

USER DEFINED
SIGNAL_ACCoupB_4
a-

USER DEFINED
SIGNAL_DisB_18

USER DEFINED
SIGNAL_DisB_34

USER DEFINED
SIGNAL_FreqB_3+

14
USER DEFINED
SIGNAL_ACCoupB_4
b+

USER DEFINED
SIGNAL_ACCoupB_4
b-

USER DEFINED
SIGNAL_DisB_19

USER DEFINED
SIGNAL_DisB_35

USER DEFINED
SIGNAL_FreqB_3-

15
USER DEFINED
SIGNAL_ACCoupB_4
c+

USER DEFINED
SIGNAL_ACCoupB_4
c-

USER DEFINED
SIGNAL_DisB_20

USER DEFINED
SIGNAL_DisB_36

USER DEFINED
SIGNAL_FreqB_4+

16
USER DEFINED
SIGNAL_ACCoupB_4
d+

USER DEFINED
SIGNAL_ACCoupB_4
d-

USER DEFINED
SIGNAL_DisB_21

USER DEFINED
SIGNAL_DisB_37

USER DEFINED
SIGNAL_FreqB_4-

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

123

17 USER DEFINED
SIGNAL_DisB_1

USER DEFINED
SIGNAL_DisB_4 +28V Reg

USER DEFINED
SIGNAL_DisB_38

USER DEFINED
SIGNAL_FreqB_5+

18 USER DEFINED
SIGNAL_DisB_2

USER DEFINED
SIGNAL_DisB_5 +28V Reg Rtn

USER DEFINED
SIGNAL_DisB_39

USER DEFINED
SIGNAL_FreqB_5-

19 USER DEFINED
SIGNAL_DisB_3

USER DEFINED
SIGNAL_DisB_6 AGND

USER DEFINED
SIGNAL_DisB_40

USER DEFINED
SIGNAL_A/B Discrete

Table B - 5 Spare Board B, JB0 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

124

JB2
PIN ROW Z ROW A ROW B ROW C ROW D

1 DCLOWB_1+ DCLOWB_1- +5V Low Hold Up AGND
2 DCLOWB_2+ DCLOWB_2- DGND IOatPrB_1+ IOatPrB_1-
3 DCLOWB_3+ DCLOWB_3- RESERVED IOtPrbB_2+ IOtPrbB_2-
4 DCLOWB_4+ DCLOWB_4- A24 IDCExcB_1+ IDCExcB_1-
5 DCLOWB_5+ DCLOWB_5- A25 IDCExcB_2+ IDCExcB_2-
6 DCLOWB_6+ DCLOWB_6- A26 IDCExcB_3 IDCExcB_3-
7 DCLOWB_7+ DCLOWB_7- A27 IDCExcB_4+ IDCExcB_4-
8 DCLOWB_8+ DCLOWB_8- A28 Vbat CJTB+

9 DCLOWB_9+ DCLOWB_9- A29 DCCoupB_1a+ +15VB

10 DCLOWB_10+ DCLOWB_10- A30 DCCoupB_1a- -15VB
11 DCLOWB_11+ DCLOWB_11- A31 DCCoupB_1b+ DCCoupB_1b-
12 DCLOWB_12+ DCLOWB_12- DGND DCCoupB_1c+ DCCoupB_1c-
13 DCLOWB_13+ DCLOWB_13- +5V DCCoupB_1d+ DCCoupB_1d-
14 DCLOWB_14+ DCLOWB_14- D16 GENSHUBF_1+ GENSHUBF_1-
15 DCMIDB_1+ DCMIDB_1- D17 GENSHUBF_2+ GENSHUBF_2-
16 DCMIDB_2+ DCMIDB_2- D18 HDLB+ HDLB-

17 DCMIDB_3+ DCMIDB_3- D19 DISOUTB_1+ DISOUTB_1-
18 DCMIDB_4+ DCMIDB_4- D20 DISOUTB_2+ DISOUTB_2-
19 DCMIDB_5+ DCMIDB_5- D21 DISOUTB_3+ DISOUTB_3-
20 DCMIDB_6+ DCMIDB_6- D22 DISOUTB_4+ DISOUTB_4-
21 DCMIDB_7+ DCMIDB_7- D23 ACExcB_1+ ACExcB_1-
22 DCMIDB_8+ DCMIDB_8- DGND +A429_TX00 ACExcB_2+
23 DCMIDB_9+ DCMIDB_9- D24 -A429_TX00 ACExcB_2-
24 DCMIDB_10+ DCMIDB_10- D25 +A429_RX01 +5VExcB_1+

25 DCMIDB_11+ DCMIDB_11- D26 -A429_RX01 +5VExcB_1-
26 DCMIDB_12+ DCMIDB_12- D27 422B_TX+0 +5VExcB_2+
27 DCMIDB_13+ DCMIDB_13- D28 422B_TX-0\232B_Tx0 +5VExcB_2-
28 DCMIDB_14+ DCMIDB_14- D29 422_RX+0 +10VExcB_1+
29 DCHIBF_1+ DCHIBF_1- D30 422_RX-0\232_Rx0 +10VExcB_1-
30 DCHIBF_2+ DCHIBF_2- D31 Serial Format +10VExcB_2+
31 DCHIB_3+ DCHIB_3- DGND Analog B Reprogram +10VExcB_2-
32 DCHIB_4+ DCHIB_4- +5V Spare B Reset AGND

Table B - 6 Spare Board B, JB2 Pin Outs

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

125

Figure B - 2 HUMS MPU Spare Slot Geometry

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

126

Appendix C - Technology Integration Questionnaire

1 Objectives

This document is intended to collect source information necessary to perform the integration of a technology module
into Goodrich’s Integrated Mechanical Diagnostics Health and Usage Monitoring System (IMD HUMS). The intent is
to use this information to create a Technology Integration Requirements Specification. Whereas the Open Systems
Requirements Specification (T1009-0100-0101) provides a detailed definition of the available interfaces and
capabilities of the IMD HUMS. The Technology Integration Requirements Specification shall: detail resource
requirements, define the interfaces in sufficient detail to allow the generation of Configuration Tables, provide Built in
Test (BIT) definition and isolation methods, define the integration process, specify validation and qualification methods
specific for each technology insertion project. Because the IMD HUMS is an Open System, the information contained
in Technology Integration Specification is not proprietary to any party.

2 Main Processor Resource Requirements

2.1 Hardware Resources
The Main Processor Unit can accommodate two hardware modules that comply with the VME 6U standard.

2.1.1 Power Supply Resources
Complete the following table by indicated the required current for each available voltage. Indicate any special
requirements or considerations in the comment column.

Voltage (Available) Current Comments
5 Volts

+15 Volts
-15 Volts
28 Volts

2.1.2 Power Status
Does the technology module have any special power up requirements?
Does the technology module require any special power hold-up or power down processing?

2.1.3 Power Dissipation
What is the total internal power dissipation of the technology module?

2.1.4 VME Card Slot External Signal I/O
There are four rows of the P2 VME connector that have been connected to the external MPU ARINC-600 connector.
Describe the external I/O requirements of the technology module in general terms (type of signals, quantity, purpose,
required excitation, equipment specification, wiring requirements, pairing of signals etc.)?

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

127

Complete the following tables for each interface signal.

Signal Name Quantity Range Accuracy Resolution Source
Impedance

Signal
Reference

Interface
Req.

Signal Name Signal Type
(i.e. voltage,
current, etc)

Input
Impedance

Bandwidth Isolation
Req.

Fault
Voltages,
currents

2.1.5 VME Bus Interface
The Primary Processor Unit provides VME bus control. Technology modules on the VME bus have read write access
to data.

Describe VME bus message throughput requirements (Information, rates, integrity etc).

2.1.6 Environmental Requirements.
Describe environmental requirements that the technology module has been or will be qualified to. Describe
assumptions associated with these qualification levels. Describe (cooling assumptions such as
conduction/convection. Describe vibration assumptions such as chassis transmissibility. Are there any known
limitations such as vibration or temperature environments?

2.1.7 Electromagnetic Computability Requirements
Describe the electromagnetic computability requirements associated with the technology module. Are there any
special considerations or limitations associated with the module or interface signals?
A filter pin connector accomplishes the EMIC to external environments. Are there any considerations/ requirements
associated with each external signal type?

Internal EMIC is accomplished by isolation, shielding and ground planes. Describe any special considerations
associated with each signal type?

2.2 Primary Processor Unit

2.2.1 PPU Embedded Software

Is there a need to integrate Ada software into the Primary Processing Environment?
If so complete the following table for each module:

Module SLOC Memory
Reqs.
Prog./Data

Execution
Rate

Execution
Req.

Execution
Priority

Execution
Time

Comments

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

128

2.2.2 PPU Data Repository Resource Requirements
Is there a need to access core aircraft parameters? If so specify a list of repository nomenclature.
Is there a need to create additional Repository Data? If so specify.

• Describe the Repository Items to be defined (for each) ::

Item Name : {Follows Syntax for Ada Identifiers}
Item Type : {Float_32 | Signed_Integer_32 | Unsinged_Integer_32 | Boolean}
Persistent : {Yes | No}
Number of Instances : {1..132 if not persistent, 1 if persistent}

Note: Persistence means that the value is saved across power cycles.

2.2.3 Basic Actions
Does the technology module require the derivation of data, calculation of exceedances, of the recognition of regimes
by the PPU?

2.2.4 Procedural Actions
Does the technology module require the sequencing of a set of actions by the PPU? If so then consider the following
questions

• Explain the Action Procedures 'Entrance Criteria'.

Do you want the entrance criteria to be a simple Boolean Value that YOU set true via your PPU resident code?
Do you want the entrance criteria to be one of the predefined Goodrich Regimes? If yes which one?
Do you want the entrance criteria to be a set of Boolean expressions involving Goodrich Core Parameters? If yes
what are the expressions?

• Explain the VPU Data Acquisition and Data Processing Duration?

What is the time duration of the VPU acquisition phase?
What is the duration of the VPU processing phase?

• Do you want to abort the Action Procedure during the VPU acquisition phase if a specific set of
criteria is not met? If so, specify the criteria?

Do you want the criteria to be a simple Boolean Value that YOU set via your PPU resident code?
Do you want the criteria to be one of the predefined Goodrich Regimes? If yes which one?
Do you want the criteria to be a set of Boolean expressions involving Goodrich Core Parameters? If yes what are the
expressions?

2.2.5 Event Detection
Does the technology module require the detection of events? If so what actions need to be taken upon the detection
of this event by the PPU?

2.2.6 Interrupt
Does the technology module require the processing of interrupts? If so describe.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

129

2.3 Vibration Processor Unit

2.3.1 VPU Embedded Software
Is there a need to integrate software into the Vibration Processing Environment?
If so complete the following table for each module:

Module SLOC Memory
Reqs.
Prog./Data

Execution
Rate

Execution
Req.

Execution
Priority

Execution
Time

Comments

2.3.2 Accelerometer Acquisition Requirements
Does the technology module require the processing of accelerometers? If so complete the following table.

Accel Name Qty Bandwidth Characteristics Acquisition
time.

Sync Req. Trigger Req Comments

2.4 Main Processor Unit Signal Conditioning Resource Requirements
The Main Processor Unit has the capability to interface with the type of signals indicated by the following table. Are
any of these types of interfaces required? If so complete the information requested.

Signal Name Quantity Range Accuracy Resolution Source
Impedance

Signal
Reference

Interface
Req.

Freq. Input
Accelerometers
Tach Signals
Optical Tracker
Index sensors
Discretes
Cockpit audio
Synchro Signals

2.5 Main Processor Serial Interface Requirements
Does the technology module require information from a serial bus? If so what type of serial device (Mil-std-1553B,
ARINC 429, RS-422, ARINC 717)?

Describe the parameters that need to be transferred. Describe the throughput and update requirements.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

130

3 Input Output Requirements

3.1 Remote Data Concentrator Requirements
The Remote Data Concentrator provides the capability to convert analog and digital signals onto an ARINC 429 serial
bus. Does the technology module require this capability?

If so complete the following tables for each interface signal.

Signal Name Quantity Range Accuracy Resolution Source
Impedance

Signal
Reference

Interface Req

Signal Name Signal Type (i.e.

voltage, current,
etc)

Input Impedance Bandwidth Isolation Req. Fault Voltages,
currents

3.2 Data Transfer Requirements
The Data Transfer Unit (DTU) provides the capability of transferring information between the MPU and the Ground
Support Station (uploading configuration tables and downloading information collected and processed during flight.
Does the technology module require this capability?

3.2.1 Upload Requirements
Does the technology module require the upload of information? If so describe the type, frequency and quantity of this
information.

3.2.2 Download Requirements
Does the technology module require the download of information? If so describe the type and quantity of this
information. What is the rate of this transfer? What are the memory requirements?

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

131

3.3 Aircrew User Interface Requirements

Does the technology module require the display of information to the aircrew? If so describe the displays using the
layout aids below.

The following is a diagram that represents a typical display on an aircraft using the Goodrich CDU. Although the
actual display may change for each aircraft model, the capabilities remain similar. Contact Goodrich for the
capabilities available on a particular aircraft.

The screen shows a typical display on the aircraft. The numbers along the side and top are not displayed; they are
present to serve as a visual aid. The line drawing characters shown to the right are used to partition the display into
specific areas. They can also be used to build crude graphics and animations. Caution, the displays are usually dumb
in nature and as such can require a great deal of CPU processing to display animations by switching between several
pages of graphics.

Fig. 1 Display Screen and Layout

Full Capability

Lines 00 through 15
Columns 00 through 23

Usable

On Line 00 and Line 15
Only Columns 04 through 19

On Lines 01 through 14
Columns 00 through 23

Typical Usage

Lines 03 through 12
Columns 00 through 23

Line 14 Button Labels Only
Line 15 Button Labels Only

Line Drawing
Characters Available

┙ = Lower Right Corner
┑ = Upper Right Corner
┍ = Upper Left Corner
┕ = Lower Left Corner
│ = Vertical Bar
─ = Horizontal Bar
┼ = Cross Bar
┷ = Upside Down T
┰ = Normal T
┣ = Left T
┨ = Right T

 012345678901234567890123
00' EXCEEDANCE '
01'CARD:***% 09:15:45'
02'────────────────────────'
03' ┌─────┐ '
04'┌───────┤XXXXX├───────┐ '
05'│ └─────┘ │ '
06'│INTEGRATED MECHANICAL│ '
07'│ DIAGNOSTICS SYSTEM │ '
08'└─────────────────────┘ '
09' '
10' !!!!!!!!!!!!!!!!!!!! '
11' '
12' '
13'────────────────────────'
14'BUTTON 1 BUTTON 3'
15' BUTTON 2 BUTTON 4 '

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

132

• Screen Definition Worksheet

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Note: The blackened boxes are not displayable on the CDU.
 The grayed boxes are reserved for use by Goodrich

Do you want to display any repository items ?

 Repository Item Name :
 Repository Item Number :
 Starting Line # :
 Starting Column # :

Does the technology module require aircrew interaction? If so describe.

What action do you wish to perform when Button 1 is pressed?

What action do you wish to perform when Button 2 is pressed?

What action do you wish to perform when Button 3 is pressed?

What action do you wish to perform when Button 4 is pressed?

4 Ground Support Station Resource Requirements

4.1 Platform Requirements
Describe the hardware software requirements of the technology module.

HUMS T1009-0100-0101 Rev A
Open System Specification August 22, 2002

133

What NT registry settings are required?
What are the memory requirements?
How many software components (dll, exe, ….)?
Does the technology module require any support files?

4.2 ADF
Will the technology module require access to information in the ADF? If so describe.

4.3 NALCOMIS Database Resource Requirements
Will the technology module require access to information contained in the NALCOMIS Database? If so describe.

4.4 User Interface

4.4.1 Icon Launch
The GSS has the capabilities to Icon launch technology modules. Is this capability desired? If so provide the
interface information required to launch the module. What is the present software interface?

4.4.2 Graphical User Interface
Describe and user interface requirements.
What is the GUI technology used (Visual C++, Visual Basic, etc)?

5 Built in Test Methods
If the technology module consists of hardware components, describe BIT philosophies that will allow isolation of
failures to either the baseline system or the technology module.
Describe failure modes and effects of the technology.
Describe how each of these failure modes would be detected.

6 Integration and Test Requirements Plan
Describe recommended integration methods for the technology module.
Describe test methods that will be used to verify the functional operation of the technology module prior to integration.
Describe test requirements to verify integration of the technology module.
Describe special test equipment necessary to verify operation of the technology module.
Describe required test cases.
Describe product Acceptance Test requirements.
Describe field test requirements.

7 Validation Requirements
Describe any requirements associated with validating the technology module. Consider all phases of integration,
bench, A/C prototype, and A/C fleet.

8 Qualification Requirements

Describe test methods that will be used to qualify the technology module.

 -Hardware
 -Software

